Fiftieth anniversary of fiber optic-based fluorometry of brain mitochondrial NADH redox state monitored in vivo.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2025-02-01 Epub Date: 2025-02-19 DOI:10.1117/1.JBO.30.S2.S23902
Avraham Mayevsky
{"title":"Fiftieth anniversary of fiber optic-based fluorometry of brain mitochondrial NADH redox state monitored <i>in vivo</i>.","authors":"Avraham Mayevsky","doi":"10.1117/1.JBO.30.S2.S23902","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>It is well known and accepted that the normal mitochondrial function in all cells in any organism is critical for the maintenance of cellular homeostasis. The development of <i>in vivo</i> technology to monitor mitochondrial function using nicotine-amide adenine dinucleotide (NADH) fluorescence started in the early 1950s. Until the early 1970s, the technology used for the light transfer between the light source and the monitored tissue as well as the detection system was very rigid and complicated. Monitoring of mitochondrial NADH redox states <i>in vivo</i> using the fluorescence approach could use a few techniques to transmit the light between the fluorometer and the monitored tissue.</p><p><strong>Aim: </strong>I describe the introduction of optical fibers as a tool to illuminate the monitored tissue as well as the light emitted from the tissue. I also present the advantages of using optical fibers.</p><p><strong>Approach: </strong>I describe in detail the introduction of ultraviolet (UV) transmitting optical fibers into the NADH monitoring system using various experimental protocols. The contact between the fiber optic probe and the monitored brain tissue was done by a special cannula cemented to the skull after removing a disk of bone in the parietal bone of the skull. In the same brain cannula, stainless steel electrodes, for electrocortical activity monitoring, were embedded in the wall of the light guide holder. The light guide holder was cemented to the skull by dental acrylic cement.</p><p><strong>Results: </strong>Using the fiber optic probe to monitor NADH fluorescence together with microcirculatory blood flow measured by laser Doppler flowmeter provided the new very unique types of results not published before.</p><p><strong>Conclusions: </strong>The introduction of UV-transmitting optical fibers, 50 years ago, to monitor tissue mitochondrial redox state opened up a new era in understanding the energy metabolism of tissues under <i>in vivo</i> conditions and in real time.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 Suppl 2","pages":"S23902"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.S2.S23902","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: It is well known and accepted that the normal mitochondrial function in all cells in any organism is critical for the maintenance of cellular homeostasis. The development of in vivo technology to monitor mitochondrial function using nicotine-amide adenine dinucleotide (NADH) fluorescence started in the early 1950s. Until the early 1970s, the technology used for the light transfer between the light source and the monitored tissue as well as the detection system was very rigid and complicated. Monitoring of mitochondrial NADH redox states in vivo using the fluorescence approach could use a few techniques to transmit the light between the fluorometer and the monitored tissue.

Aim: I describe the introduction of optical fibers as a tool to illuminate the monitored tissue as well as the light emitted from the tissue. I also present the advantages of using optical fibers.

Approach: I describe in detail the introduction of ultraviolet (UV) transmitting optical fibers into the NADH monitoring system using various experimental protocols. The contact between the fiber optic probe and the monitored brain tissue was done by a special cannula cemented to the skull after removing a disk of bone in the parietal bone of the skull. In the same brain cannula, stainless steel electrodes, for electrocortical activity monitoring, were embedded in the wall of the light guide holder. The light guide holder was cemented to the skull by dental acrylic cement.

Results: Using the fiber optic probe to monitor NADH fluorescence together with microcirculatory blood flow measured by laser Doppler flowmeter provided the new very unique types of results not published before.

Conclusions: The introduction of UV-transmitting optical fibers, 50 years ago, to monitor tissue mitochondrial redox state opened up a new era in understanding the energy metabolism of tissues under in vivo conditions and in real time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Light-based therapy of infected wounds: a review of dose considerations for photodynamic microbial inactivation and photobiomodulation. Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Hyperspectral analysis to assess gametocytogenesis stage progression in malaria-infected human erythrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1