Utility of binding protein fusions to immunoglobulin heavy chain constant regions from mammalian and avian species.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2025-02-17 DOI:10.1016/j.jbc.2025.108324
Ningyu Zhu, Philip M Smallwood, John Williams, Yanshu Wang, Jeremy Nathans
{"title":"Utility of binding protein fusions to immunoglobulin heavy chain constant regions from mammalian and avian species.","authors":"Ningyu Zhu, Philip M Smallwood, John Williams, Yanshu Wang, Jeremy Nathans","doi":"10.1016/j.jbc.2025.108324","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies are of central importance as reagents for the localization of proteins and other biomolecules in cells and tissues. To expand the repertoire of antibody-based reagents, we have constructed a series of plasmid vectors that permit expression of amino-terminal fusions to the hinge and Fc regions from goat, guinea pig, human, mouse, and rabbit IgGs, and chicken IgY. The resulting fusion proteins can be produced in transfected mammalian cells and detected with commercially available and species-specific secondary antibody reagents. We demonstrate the utility of this platform by constructing and testing Fc fusions with DARPin, single chain (sc)Fv, nanobody, toxin, and chemokine partners. The resulting fusion proteins were used to detect their targets in tissue sections or on the surface of transfected cells by immunofluorescent staining, or on the surface of immune cells by flow cytometry. By expanding the range of Fc sequences available for fusion protein production, this platform will expand the repertoire of primary antibody reagents for multiplexed immunostaining and FACS analyses.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108324"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108324","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibodies are of central importance as reagents for the localization of proteins and other biomolecules in cells and tissues. To expand the repertoire of antibody-based reagents, we have constructed a series of plasmid vectors that permit expression of amino-terminal fusions to the hinge and Fc regions from goat, guinea pig, human, mouse, and rabbit IgGs, and chicken IgY. The resulting fusion proteins can be produced in transfected mammalian cells and detected with commercially available and species-specific secondary antibody reagents. We demonstrate the utility of this platform by constructing and testing Fc fusions with DARPin, single chain (sc)Fv, nanobody, toxin, and chemokine partners. The resulting fusion proteins were used to detect their targets in tissue sections or on the surface of transfected cells by immunofluorescent staining, or on the surface of immune cells by flow cytometry. By expanding the range of Fc sequences available for fusion protein production, this platform will expand the repertoire of primary antibody reagents for multiplexed immunostaining and FACS analyses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Double Prenylation of Budding Yeast Ykt6 Regulates Cell Wall Integrity and Autophagy. Proximal cysteine residues in proteins promote Nε-carboxyalkylation of lysine residues by α-dicarbonyl compounds. Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum. Substrate recognition in Bacillus anthracis sortase B beyond its canonical pentapeptide binding motif and use in sortase-mediated ligation. The ROGDI protein mutated in Kohlschutter-Tonz syndrome is a novel subunit of the Rabconnectin-3 complex implicated in V-ATPase assembly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1