Chun Xia Li, Ruo Man Wu, Qian Lin Xie, Fei Wang, Xiao Le Xu
{"title":"Procyanidin B2 attenuates pathological cardiac fibrosis and inflammation: role of PPARγ.","authors":"Chun Xia Li, Ruo Man Wu, Qian Lin Xie, Fei Wang, Xiao Le Xu","doi":"10.1097/FJC.0000000000001684","DOIUrl":null,"url":null,"abstract":"<p><p>Procyanidin B2 (PB2) is a prominent procyanidin isomer. Its effects and mechanisms in cardiac remodeling are not fully understood. Peroxisome proliferator-activated receptor gamma (PPAR-γ) plays a crucial role in regulating cardiac hypertrophy, fibrosis, and inflammation. This study aims to investigate the effect of PB2 on pathological cardiac fibrosis and inflammation, focusing on the underlying mechanisms involving PPAR-γ. In vitro, cardiac fibrosis was induced in cardiac fibroblasts using angiotensin II. In vivo, a mouse model of pathological cardiac fibrosis was generated through transverse aortic constriction to induce pressure overload. We found that PB2 inhibited proliferation, differentiation, collagen accumulation, and the NF-κB inflammation pathway in cardiac fibroblasts triggered by angiotensin II. These inhibitory effects were negated by the PPAR-γ antagonist GW9662 and RNA interference. Additionally, PB2 directly elevated PPAR-γ expression in cardiac fibroblasts. Similarly, PB2 alleviated transverse aortic constriction-induced cardiac dysfunction, myocardial fibrosis, and inflammation in mice. These cardioprotective effects of PB2 in vivo were counteracted by co-administration with GW9662. Correspondingly, the upregulation of PPAR-γ protein expression by PB2 in pressure-overloaded hearts was also counteracted by GW9662 co-administration. In conclusion, this study demonstrates that PB2 exerts protective effects against pathological cardiac fibrosis and inflammation through a PPAR-γ dependent mechanism.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001684","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Procyanidin B2 (PB2) is a prominent procyanidin isomer. Its effects and mechanisms in cardiac remodeling are not fully understood. Peroxisome proliferator-activated receptor gamma (PPAR-γ) plays a crucial role in regulating cardiac hypertrophy, fibrosis, and inflammation. This study aims to investigate the effect of PB2 on pathological cardiac fibrosis and inflammation, focusing on the underlying mechanisms involving PPAR-γ. In vitro, cardiac fibrosis was induced in cardiac fibroblasts using angiotensin II. In vivo, a mouse model of pathological cardiac fibrosis was generated through transverse aortic constriction to induce pressure overload. We found that PB2 inhibited proliferation, differentiation, collagen accumulation, and the NF-κB inflammation pathway in cardiac fibroblasts triggered by angiotensin II. These inhibitory effects were negated by the PPAR-γ antagonist GW9662 and RNA interference. Additionally, PB2 directly elevated PPAR-γ expression in cardiac fibroblasts. Similarly, PB2 alleviated transverse aortic constriction-induced cardiac dysfunction, myocardial fibrosis, and inflammation in mice. These cardioprotective effects of PB2 in vivo were counteracted by co-administration with GW9662. Correspondingly, the upregulation of PPAR-γ protein expression by PB2 in pressure-overloaded hearts was also counteracted by GW9662 co-administration. In conclusion, this study demonstrates that PB2 exerts protective effects against pathological cardiac fibrosis and inflammation through a PPAR-γ dependent mechanism.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.