Towards the yin and yang of fish locomotion: linking energetics, ecology and mechanics through field and lab approaches.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2025-02-15 Epub Date: 2025-02-20 DOI:10.1242/jeb.248011
James C Liao
{"title":"Towards the yin and yang of fish locomotion: linking energetics, ecology and mechanics through field and lab approaches.","authors":"James C Liao","doi":"10.1242/jeb.248011","DOIUrl":null,"url":null,"abstract":"<p><p>Most of our understanding of fish locomotion has focused on elementary behaviors such as steady swimming and escape responses in simple environments. As the field matures, increasing attention is being paid to transient and unsteady behaviors that characterize more complex interactions with the environment. This Commentary advocates for an ecologically relevant approach to lab studies. Specific examples have brought new understanding to the energetic consequences of fish swimming, such as (1) station holding around bluff bodies, which departs drastically from steady swimming in almost all aspects of kinematics, muscle activity and energetics, and (2) transient behaviors such as acceleration and feeding, which are critical to survival but often neglected because of challenges in measuring costs. Beyond the lab, a far richer diversity of behaviors is available when fish are given enough space and time to move. Mesocosm studies are poised to reveal new insights into fish swimming that are inaccessible in laboratory settings. Next-generation biologgers that incorporate neural recordings will usher in a new era for understanding biomechanics in the wild and open the door for a more mechanistic understanding of how changing environments affect animal movement. These advances promise to allow insights into animal locomotion in ways that will mutually complement and accelerate laboratory and field studies in the years to come.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.248011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most of our understanding of fish locomotion has focused on elementary behaviors such as steady swimming and escape responses in simple environments. As the field matures, increasing attention is being paid to transient and unsteady behaviors that characterize more complex interactions with the environment. This Commentary advocates for an ecologically relevant approach to lab studies. Specific examples have brought new understanding to the energetic consequences of fish swimming, such as (1) station holding around bluff bodies, which departs drastically from steady swimming in almost all aspects of kinematics, muscle activity and energetics, and (2) transient behaviors such as acceleration and feeding, which are critical to survival but often neglected because of challenges in measuring costs. Beyond the lab, a far richer diversity of behaviors is available when fish are given enough space and time to move. Mesocosm studies are poised to reveal new insights into fish swimming that are inaccessible in laboratory settings. Next-generation biologgers that incorporate neural recordings will usher in a new era for understanding biomechanics in the wild and open the door for a more mechanistic understanding of how changing environments affect animal movement. These advances promise to allow insights into animal locomotion in ways that will mutually complement and accelerate laboratory and field studies in the years to come.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Deep learning-based attenuation correction for whole-body PET - a multi-tracer study with 18F-FDG, 68 Ga-DOTATATE, and 18F-Fluciclovine.
IF 9.1 1区 医学European Journal of Nuclear Medicine and Molecular ImagingPub Date : 2022-07-01 DOI: 10.1007/s00259-022-05748-2
Takuya Toyonaga, Dan Shao, Luyao Shi, Jiazhen Zhang, Enette Mae Revilla, David Menard, Joseph Ankrah, Kenji Hirata, Ming-Kai Chen, John A Onofrey, Yihuan Lu
Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study
IF 9.1 1区 医学European Journal of Nuclear Medicine and Molecular ImagingPub Date : 2025-02-19 DOI: 10.1007/s00259-025-07156-8
Hanzhong Wang, Xiaoya Qiao, Wenxiang Ding, Gaoyu Chen, Ying Miao, Rui Guo, Xiaohua Zhu, Zhaoping Cheng, Jiehua Xu, Biao Li, Qiu Huang
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana. Comparative mechanical and elastic properties of the doral and ventral tendons in the peduncle of harbor porpoise (Phocoena phocoena). Encoding of antennal position and velocity by the Johnston's organ in hawkmoths. Transcriptomic correlates of nutritional manipulation in a facultatively social bee. Dietary modification of membrane composition mimics characteristics of thermal acclimation in the Eastern newt (Notophthalmus viridescens).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1