{"title":"An annual cycle perspective on energetics and locomotion of migratory animals.","authors":"Judy Shamoun-Baranes, Kees C J Camphuysen","doi":"10.1242/jeb.248053","DOIUrl":null,"url":null,"abstract":"<p><p>Animal migrations, or long-distance movements, on land, through water or in the air, are considered energetically costly because of the investment in persistent locomotion typical for migration. Diverse strategies exist to manage these energetic costs. Yet migration is only one stage in an annual cycle and may not be the most energetically costly. To better understand how free-ranging animals adaptively organize energy expenditure and locomotion, an annual cycle perspective is needed. Bio-logging data are collected for a range of animal species and could facilitate a life cycle approach to study energy expenditure. We provide examples from several studies across different taxa, as well as a more in-depth exploration from our own recent research on time activity budgets based on field observations and bio-logging data to estimate daily energy expenditure in a migratory seabird throughout a year. Our research has shown that daily energy expenditure is highest (1.7× average daily energy expenditure) during the spring migration of long-distance migratory gulls, whereas short-distance migrants expend the most energy (1.4× average daily energy expenditure) during the breeding season. Based on the examples provided, we show how bio-energetic models create exciting opportunities to study daily energetics and behaviour of migratory animals, although limitations also still exist. Such studies can reveal when, where and why peaks and lulls in energy expenditure arise over the annual cycle of a migrant, if long-distance movements are indeed energetically expensive and how animals can adapt to fluctuating demands in their natural environment throughout the year.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 Suppl_1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.248053","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal migrations, or long-distance movements, on land, through water or in the air, are considered energetically costly because of the investment in persistent locomotion typical for migration. Diverse strategies exist to manage these energetic costs. Yet migration is only one stage in an annual cycle and may not be the most energetically costly. To better understand how free-ranging animals adaptively organize energy expenditure and locomotion, an annual cycle perspective is needed. Bio-logging data are collected for a range of animal species and could facilitate a life cycle approach to study energy expenditure. We provide examples from several studies across different taxa, as well as a more in-depth exploration from our own recent research on time activity budgets based on field observations and bio-logging data to estimate daily energy expenditure in a migratory seabird throughout a year. Our research has shown that daily energy expenditure is highest (1.7× average daily energy expenditure) during the spring migration of long-distance migratory gulls, whereas short-distance migrants expend the most energy (1.4× average daily energy expenditure) during the breeding season. Based on the examples provided, we show how bio-energetic models create exciting opportunities to study daily energetics and behaviour of migratory animals, although limitations also still exist. Such studies can reveal when, where and why peaks and lulls in energy expenditure arise over the annual cycle of a migrant, if long-distance movements are indeed energetically expensive and how animals can adapt to fluctuating demands in their natural environment throughout the year.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.