In vitro molecular assessment of Cryptosporidium parvum parasitic load on human ileocecal adenocarcinoma cell culture after targeting by tavaborole (AN2690).

Q3 Immunology and Microbiology Journal of Parasitic Diseases Pub Date : 2025-03-01 Epub Date: 2024-09-17 DOI:10.1007/s12639-024-01729-4
Abeer M A Mahgoub, Marwa Ahmed Gameil, Marwa Abdelgawad, Hanaa Wanas, Alshaimaa M R Hamed
{"title":"In vitro molecular assessment of <i>Cryptosporidium parvum</i> parasitic load on human ileocecal adenocarcinoma cell culture after targeting by tavaborole (AN2690).","authors":"Abeer M A Mahgoub, Marwa Ahmed Gameil, Marwa Abdelgawad, Hanaa Wanas, Alshaimaa M R Hamed","doi":"10.1007/s12639-024-01729-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cryptosporidiosis remains a main source of life-threatening diarrhea in young children and immunocompromised patients. The current approved treatment; Nitazoxanide decreases the duration of diarrhea in immunocompetent adults but is not effective in immunocompromised patients. Benzoxaboroles are synthesized boron-heterocyclic compounds that have recently reported promising anti-protozoal action against several protozoa including <i>Plasmodium</i>, <i>Leishmania</i> and <i>Toxoplasma</i> species, by inhibiting essential microbial enzymes. Tavaborole has been a medically approved benzoxaborole that showed a promising anti-protozoal activity by inhibiting leucyl-tRNA synthetase enzyme. The present work was a trial to find the potential efficacy of Tavaborole (AN2690) as a promising drug against <i>Cryptosporidium parvum</i>. The drug was compared to Nitazoxanide in an in vitro human ileocecal adenocarcinoma (HCT-8) culture model. Drug efficacy was evaluated by quantitative real time polymerase chain reaction (PCR). The molecular assessment revealed a statistically remarkable decrease in parasitic load under the effect of Tavaborole when compared to Nitazoxanide.</p>","PeriodicalId":16664,"journal":{"name":"Journal of Parasitic Diseases","volume":"49 1","pages":"84-92"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parasitic Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12639-024-01729-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

Abstract

Cryptosporidiosis remains a main source of life-threatening diarrhea in young children and immunocompromised patients. The current approved treatment; Nitazoxanide decreases the duration of diarrhea in immunocompetent adults but is not effective in immunocompromised patients. Benzoxaboroles are synthesized boron-heterocyclic compounds that have recently reported promising anti-protozoal action against several protozoa including Plasmodium, Leishmania and Toxoplasma species, by inhibiting essential microbial enzymes. Tavaborole has been a medically approved benzoxaborole that showed a promising anti-protozoal activity by inhibiting leucyl-tRNA synthetase enzyme. The present work was a trial to find the potential efficacy of Tavaborole (AN2690) as a promising drug against Cryptosporidium parvum. The drug was compared to Nitazoxanide in an in vitro human ileocecal adenocarcinoma (HCT-8) culture model. Drug efficacy was evaluated by quantitative real time polymerase chain reaction (PCR). The molecular assessment revealed a statistically remarkable decrease in parasitic load under the effect of Tavaborole when compared to Nitazoxanide.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Parasitic Diseases
Journal of Parasitic Diseases Immunology and Microbiology-Parasitology
CiteScore
2.60
自引率
0.00%
发文量
86
期刊介绍: The primary constituency of the Journal of Parasitic Diseases is parasitology. It publishes original research papers (pure, applied and clinical), which contribute significantly to any area of parasitology. Research papers on various aspects of cellular and molecular parasitology are welcome.
期刊最新文献
Zinc nanoparticles coated with peppermint (Mentha piperita) essential oil: a nanoformulated compound with anti-leishmanial activity. The antiparasitic effect of C-Phycocyanin nanoparticles on cryptosporidiosis in immunosuppressed mice. Prevalence and histopathological analysis of hytadid cysts in sheep and cattle slaughtered in Batna, Northeast Algeria. A report on outbreak of Amyloodinium ocellatum infestation in broodstock of Java rabbitfish, Siganus javus (Linnaeus, 1766). Albendazole resistance evidence in Teladorsagia circumcincta in Iranian sheep by allele-specific PCR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1