Antidepressant aripiprazole induces adverse effects on neural development during cortex organoid generation.

IF 3.3 4区 医学 Q2 REPRODUCTIVE BIOLOGY Reproductive toxicology Pub Date : 2025-02-17 DOI:10.1016/j.reprotox.2025.108862
Youngin Jeong, Suil Son, Jiyun Park, C-Yoon Kim, Jin Kim
{"title":"Antidepressant aripiprazole induces adverse effects on neural development during cortex organoid generation.","authors":"Youngin Jeong, Suil Son, Jiyun Park, C-Yoon Kim, Jin Kim","doi":"10.1016/j.reprotox.2025.108862","DOIUrl":null,"url":null,"abstract":"<p><p>A significant number of women experience anxiety and depressive symptoms during pregnancy, leading to the prescription of antidepressants, including aripiprazole. However, although a few animal studies have reported its developmental toxicity, there is a lack of research on the potential risks aripiprazole may pose to the fetus, particularly regarding neural development, as well as an absence of appropriate models to verify these effects. Therefore, this study investigates the impact of aripiprazole on neural development using cortex organoids, which can effectively model human brain development and function while overcoming interspecies differences. Cortex organoids were generated and exposed to aripiprazole at concentrations of 0.3-9µM over 4 weeks. We assessed morphological changes, cell viability, gene expression, immunofluorescence staining, and electrophysiological function. The results revealed that aripiprazole led to significant reductions in organoid size and increased cell death, particularly at higher concentrations. Immunofluorescence analysis showed abnormalities in the expression patterns of neural stem cells and neuronal markers. Additionally, real-time PCR demonstrated decreased expression of genes related to neural stem cells, neural differentiation and migration, maturation, synaptogenesis, and gliogenesis, along with increased apoptosis-related gene expression. Electrophysiological recordings indicated impaired neural activity, evidenced by reduced mean firing rates. Our study is the first to demonstrate that aripiprazole induces adverse effects on neural development across functional, molecular, and morphological aspects. The findings will aid in a better understanding of the risks associated with antidepressant use during pregnancy in terms of neural development and suggest that cortex organoids are a valuable model for evaluating potential neurodevelopmental toxicants.</p>","PeriodicalId":21137,"journal":{"name":"Reproductive toxicology","volume":" ","pages":"108862"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.reprotox.2025.108862","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A significant number of women experience anxiety and depressive symptoms during pregnancy, leading to the prescription of antidepressants, including aripiprazole. However, although a few animal studies have reported its developmental toxicity, there is a lack of research on the potential risks aripiprazole may pose to the fetus, particularly regarding neural development, as well as an absence of appropriate models to verify these effects. Therefore, this study investigates the impact of aripiprazole on neural development using cortex organoids, which can effectively model human brain development and function while overcoming interspecies differences. Cortex organoids were generated and exposed to aripiprazole at concentrations of 0.3-9µM over 4 weeks. We assessed morphological changes, cell viability, gene expression, immunofluorescence staining, and electrophysiological function. The results revealed that aripiprazole led to significant reductions in organoid size and increased cell death, particularly at higher concentrations. Immunofluorescence analysis showed abnormalities in the expression patterns of neural stem cells and neuronal markers. Additionally, real-time PCR demonstrated decreased expression of genes related to neural stem cells, neural differentiation and migration, maturation, synaptogenesis, and gliogenesis, along with increased apoptosis-related gene expression. Electrophysiological recordings indicated impaired neural activity, evidenced by reduced mean firing rates. Our study is the first to demonstrate that aripiprazole induces adverse effects on neural development across functional, molecular, and morphological aspects. The findings will aid in a better understanding of the risks associated with antidepressant use during pregnancy in terms of neural development and suggest that cortex organoids are a valuable model for evaluating potential neurodevelopmental toxicants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reproductive toxicology
Reproductive toxicology 生物-毒理学
CiteScore
6.50
自引率
3.00%
发文量
131
审稿时长
45 days
期刊介绍: Drawing from a large number of disciplines, Reproductive Toxicology publishes timely, original research on the influence of chemical and physical agents on reproduction. Written by and for obstetricians, pediatricians, embryologists, teratologists, geneticists, toxicologists, andrologists, and others interested in detecting potential reproductive hazards, the journal is a forum for communication among researchers and practitioners. Articles focus on the application of in vitro, animal and clinical research to the practice of clinical medicine. All aspects of reproduction are within the scope of Reproductive Toxicology, including the formation and maturation of male and female gametes, sexual function, the events surrounding the fusion of gametes and the development of the fertilized ovum, nourishment and transport of the conceptus within the genital tract, implantation, embryogenesis, intrauterine growth, placentation and placental function, parturition, lactation and neonatal survival. Adverse reproductive effects in males will be considered as significant as adverse effects occurring in females. To provide a balanced presentation of approaches, equal emphasis will be given to clinical and animal or in vitro work. Typical end points that will be studied by contributors include infertility, sexual dysfunction, spontaneous abortion, malformations, abnormal histogenesis, stillbirth, intrauterine growth retardation, prematurity, behavioral abnormalities, and perinatal mortality.
期刊最新文献
Unveiling the transcriptional pattern of epithelial ovarian carcinoma-related microRNAs-mRNAs network after mouse exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Antidepressant aripiprazole induces adverse effects on neural development during cortex organoid generation. The potential role of ascorbic acid in attenuating infertility induced by emamectin benzoate via suppressing oxidative stress and ameliorating sperm count in male rats. Hormonal mechanism and pathogenetic therapy of citalopram-induced infertility in female rats The biological effects of bisphenol AF in reproduction and development: What do we know so far?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1