[Multi-Omic Rejuvenation: A New Strategy for Lifespan Extension].

O Y Rybina, E G Pasyukova
{"title":"[Multi-Omic Rejuvenation: A New Strategy for Lifespan Extension].","authors":"O Y Rybina, E G Pasyukova","doi":"10.31857/S0026898424050013, EDN: HUVYAW","DOIUrl":null,"url":null,"abstract":"<p><p>Various age-related disorders accumulate during aging, causing a decline in tissue and organ function, raising the risk of disease development, and leading to death. Age-related phenotypes are tightly related to an increase in coordinated, progressive changes in the transcriptome, proteome, metabolome, microbiome, and epigenome. Age-dependent modifications of the transcriptome, caused by changes in epigenetic, transcriptional, and post-transcriptional regulation of gene expression, lead to the accumulation of age-related changes in the proteome and metabolome. In turn, dynamic changes in the microbiota during aging also affect gene expression and thus lead to age-related changes in the proteome and metabolome. Recent studies have shown that multi-omic rejuvenation technologies decrease age-related disorders and extend longevity. For example, the short-term induction of the expression of transcription factors that ensure the reprogramming of somatic cells into pluripotent stem cells is accompanied by the restoration of the DNA methylation pattern and transcriptome expression profile characteristic of younger tissues, resulting in an increased lifespan. In this review, we discuss existing multi-omic rejuvenation technologies and the prospects for extending and improving life.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 5","pages":"684-693"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424050013, EDN: HUVYAW","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Various age-related disorders accumulate during aging, causing a decline in tissue and organ function, raising the risk of disease development, and leading to death. Age-related phenotypes are tightly related to an increase in coordinated, progressive changes in the transcriptome, proteome, metabolome, microbiome, and epigenome. Age-dependent modifications of the transcriptome, caused by changes in epigenetic, transcriptional, and post-transcriptional regulation of gene expression, lead to the accumulation of age-related changes in the proteome and metabolome. In turn, dynamic changes in the microbiota during aging also affect gene expression and thus lead to age-related changes in the proteome and metabolome. Recent studies have shown that multi-omic rejuvenation technologies decrease age-related disorders and extend longevity. For example, the short-term induction of the expression of transcription factors that ensure the reprogramming of somatic cells into pluripotent stem cells is accompanied by the restoration of the DNA methylation pattern and transcriptome expression profile characteristic of younger tissues, resulting in an increased lifespan. In this review, we discuss existing multi-omic rejuvenation technologies and the prospects for extending and improving life.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
期刊最新文献
[Adapting Mouse Genome Editing Technique from Scratch Using in utero Electroporation]. [Antibiotic Resistance Genes in Cattle Gut Microbiota: Influence of Housing Conditions]. [Antibiotic Resistance: Threats and Search for Solution]. [Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies]. [CpG Traffic Lights Are Involved in Active DNA Demethylation].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1