[Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies].

U M Ibragimova, N V Valuisky, S A Sorokina, X I Zhukova, V R Raiberg, R A Litvinov
{"title":"[Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies].","authors":"U M Ibragimova, N V Valuisky, S A Sorokina, X I Zhukova, V R Raiberg, R A Litvinov","doi":"10.31857/S0026898424060153, EDN: IACGIA","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular matrix (ECM) provides structural support and regulates cell activity. ECM dysfunction due to metabolic pathologies or aging can lead to disease. Developing ECM protectors is crucial for the etiological prevention and treatment of pathologies associated with ECM alterations. Key mechanisms of pathological changes in the ECM include nonenzymatic reactions, such as glycation and glycoxidation. The potential of agents as ECM protectors can be assessed by their capability of inhibiting these processes. Compounds based on heterocyclic scaffolds with partially hydrogenated isoindole fragments were tested for capability of slowing down the formation of advanced glycation end-products (AGEs). A combination of in silico and in vitro approaches was employed. In the in silico study, the energies of the frontier molecular orbitals of the compounds were determined using the ab initio method with the 6-311G(d,p) basis set. Antiglycation activity was then investigated in the glycation reaction of bovine serum albumin (BSA) with glucose, using BSA as a model protein. Pyridoxamine served as a reference compound. Antiglycation activities of the compounds were evaluated spectrofluorometrically by measuring the fluorescent products at excitation/emission wavelengths of 440/520 nm, which are not typically used for assessing antiglycation properties. Glycation and oxidation products in the human skin can be detected at these wavelengths. Their amount correlates with chronological age, in contrast to certain other glycation products. It was found experimentally that the energies of the frontier molecular orbitals of the compounds can serve as predictors of their capability of slowing down the formation of fluorescent products detected at 440/520 nm. Inhibiting the formation of the products may be significant for treatment and prevention of diseases, including metabolic, fibrotic, or age-associated conditions. At 100 μM, series of hydrogenated 3a,6-epoxyisoindole-7-carboxylic acids (compounds of type XIII) and cyclopenta[b]furo[2,3-c]pyrrole-3-carboxylic acids (structures of type XIX) were found to display the most pronounced antiglycation properties.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"58 6","pages":"1052-1060"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898424060153, EDN: IACGIA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The extracellular matrix (ECM) provides structural support and regulates cell activity. ECM dysfunction due to metabolic pathologies or aging can lead to disease. Developing ECM protectors is crucial for the etiological prevention and treatment of pathologies associated with ECM alterations. Key mechanisms of pathological changes in the ECM include nonenzymatic reactions, such as glycation and glycoxidation. The potential of agents as ECM protectors can be assessed by their capability of inhibiting these processes. Compounds based on heterocyclic scaffolds with partially hydrogenated isoindole fragments were tested for capability of slowing down the formation of advanced glycation end-products (AGEs). A combination of in silico and in vitro approaches was employed. In the in silico study, the energies of the frontier molecular orbitals of the compounds were determined using the ab initio method with the 6-311G(d,p) basis set. Antiglycation activity was then investigated in the glycation reaction of bovine serum albumin (BSA) with glucose, using BSA as a model protein. Pyridoxamine served as a reference compound. Antiglycation activities of the compounds were evaluated spectrofluorometrically by measuring the fluorescent products at excitation/emission wavelengths of 440/520 nm, which are not typically used for assessing antiglycation properties. Glycation and oxidation products in the human skin can be detected at these wavelengths. Their amount correlates with chronological age, in contrast to certain other glycation products. It was found experimentally that the energies of the frontier molecular orbitals of the compounds can serve as predictors of their capability of slowing down the formation of fluorescent products detected at 440/520 nm. Inhibiting the formation of the products may be significant for treatment and prevention of diseases, including metabolic, fibrotic, or age-associated conditions. At 100 μM, series of hydrogenated 3a,6-epoxyisoindole-7-carboxylic acids (compounds of type XIII) and cyclopenta[b]furo[2,3-c]pyrrole-3-carboxylic acids (structures of type XIX) were found to display the most pronounced antiglycation properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
期刊最新文献
[Adapting Mouse Genome Editing Technique from Scratch Using in utero Electroporation]. [Antibiotic Resistance Genes in Cattle Gut Microbiota: Influence of Housing Conditions]. [Antibiotic Resistance: Threats and Search for Solution]. [Antiglycation Activity of Isoindole Derivatives and Its Prediction Using Frontier Molecular Orbital Energies]. [CpG Traffic Lights Are Involved in Active DNA Demethylation].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1