Addicted brains on brief abstinence: Similarities and differences in functional connectivity patterns between internet gaming disorder and tobacco use disorder

IF 5.3 2区 医学 Q1 CLINICAL NEUROLOGY Progress in Neuro-Psychopharmacology & Biological Psychiatry Pub Date : 2025-02-17 DOI:10.1016/j.pnpbp.2025.111286
Xuefeng Xu, Bo Yang, Yanbin Zheng, Haosen Ni, Guang-Heng Dong
{"title":"Addicted brains on brief abstinence: Similarities and differences in functional connectivity patterns between internet gaming disorder and tobacco use disorder","authors":"Xuefeng Xu,&nbsp;Bo Yang,&nbsp;Yanbin Zheng,&nbsp;Haosen Ni,&nbsp;Guang-Heng Dong","doi":"10.1016/j.pnpbp.2025.111286","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Many studies have attempted to understand the neural basis of internet gaming disorder (IGD) to explore if IGD could be diagnosed as an addictive behavior. However, those findings were often inconsistent due to the participants having varying craving levels. Individual brain activities in the abstinence state are different from that in the neutral state. Therefore, exploring the responses of the brain during abstinence in IGD and comparing them with substance addiction is crucial in understanding this complex, craving-prone disorder.</div></div><div><h3>Methods</h3><div>Three groups of male participants were recruited: IGD (61), tobacco use disorder (TUD) (61), and health controls (80). Resting-state functional Magnetic Resonance Imaging data were collected after brief abstinence (not gaming/smoking for about 1.5 h). First, we identified abnormal brain regions with altered amplitude of low-frequency fluctuations <strong>(</strong>ALFF) in IGD and TUD. Then, using these regions as the regions of interest, we conducted a functional connectivity (FC) analysis to explore the similarities and differences between IGD and TUD. Finally, we used a neural network analysis to build a classification model based on ALFF results.</div></div><div><h3>Results</h3><div>The abnormal brain regions with altered ALFF were observed in both IGD and TUD, including the superior frontal gyrus, orbitofrontal cortex, precentral gyrus, caudate, and thalamus. FC analysis showed similarities in the orbitofrontal regions, specifically between caudate-nucleus accumbens and thalamus-precentral gyrus, and differences in the executive control and reward regions. Neural network analysis demonstrated that abnormal ALFF brain regions can effectively classify addicted individuals from health controls.</div></div><div><h3>Conclusions</h3><div>This study showed that brain regions in IGD and TUD had similar ALFF changes during brief abstinence. However, FC analyses revealed contrasting results. FC in IGD increased, while it decreased in TUD. These differences may be due to IGD's internal craving, unlike nicotine for TUD. These findings deepen our understanding of the neural mechanisms of IGD.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111286"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Many studies have attempted to understand the neural basis of internet gaming disorder (IGD) to explore if IGD could be diagnosed as an addictive behavior. However, those findings were often inconsistent due to the participants having varying craving levels. Individual brain activities in the abstinence state are different from that in the neutral state. Therefore, exploring the responses of the brain during abstinence in IGD and comparing them with substance addiction is crucial in understanding this complex, craving-prone disorder.

Methods

Three groups of male participants were recruited: IGD (61), tobacco use disorder (TUD) (61), and health controls (80). Resting-state functional Magnetic Resonance Imaging data were collected after brief abstinence (not gaming/smoking for about 1.5 h). First, we identified abnormal brain regions with altered amplitude of low-frequency fluctuations (ALFF) in IGD and TUD. Then, using these regions as the regions of interest, we conducted a functional connectivity (FC) analysis to explore the similarities and differences between IGD and TUD. Finally, we used a neural network analysis to build a classification model based on ALFF results.

Results

The abnormal brain regions with altered ALFF were observed in both IGD and TUD, including the superior frontal gyrus, orbitofrontal cortex, precentral gyrus, caudate, and thalamus. FC analysis showed similarities in the orbitofrontal regions, specifically between caudate-nucleus accumbens and thalamus-precentral gyrus, and differences in the executive control and reward regions. Neural network analysis demonstrated that abnormal ALFF brain regions can effectively classify addicted individuals from health controls.

Conclusions

This study showed that brain regions in IGD and TUD had similar ALFF changes during brief abstinence. However, FC analyses revealed contrasting results. FC in IGD increased, while it decreased in TUD. These differences may be due to IGD's internal craving, unlike nicotine for TUD. These findings deepen our understanding of the neural mechanisms of IGD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
1.80%
发文量
153
审稿时长
56 days
期刊介绍: Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject. Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.
期刊最新文献
Exploring the potential of psychedelic-assisted psychotherapy for moral injury: A scoping review. Neurological soft signs and thyroid hormones in schizophrenia spectrum disorders. Sex-dependent effects of stress on aIC-NAc circuit neuroplasticity: Role of the endocannabinoid system. Impact of sex and complex PTSD comorbidity on pharmacological treatment response in bipolar disorder patients. Spatial patterns of individual morphological deformation in schizophrenia: Putative cortical compensatory of unaffected sibling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1