Addicted brains on brief abstinence: Similarities and differences in functional connectivity patterns between internet gaming disorder and tobacco use disorder
Xuefeng Xu, Bo Yang, Yanbin Zheng, Haosen Ni, Guang-Heng Dong
{"title":"Addicted brains on brief abstinence: Similarities and differences in functional connectivity patterns between internet gaming disorder and tobacco use disorder","authors":"Xuefeng Xu, Bo Yang, Yanbin Zheng, Haosen Ni, Guang-Heng Dong","doi":"10.1016/j.pnpbp.2025.111286","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Many studies have attempted to understand the neural basis of internet gaming disorder (IGD) to explore if IGD could be diagnosed as an addictive behavior. However, those findings were often inconsistent due to the participants having varying craving levels. Individual brain activities in the abstinence state are different from that in the neutral state. Therefore, exploring the responses of the brain during abstinence in IGD and comparing them with substance addiction is crucial in understanding this complex, craving-prone disorder.</div></div><div><h3>Methods</h3><div>Three groups of male participants were recruited: IGD (61), tobacco use disorder (TUD) (61), and health controls (80). Resting-state functional Magnetic Resonance Imaging data were collected after brief abstinence (not gaming/smoking for about 1.5 h). First, we identified abnormal brain regions with altered amplitude of low-frequency fluctuations <strong>(</strong>ALFF) in IGD and TUD. Then, using these regions as the regions of interest, we conducted a functional connectivity (FC) analysis to explore the similarities and differences between IGD and TUD. Finally, we used a neural network analysis to build a classification model based on ALFF results.</div></div><div><h3>Results</h3><div>The abnormal brain regions with altered ALFF were observed in both IGD and TUD, including the superior frontal gyrus, orbitofrontal cortex, precentral gyrus, caudate, and thalamus. FC analysis showed similarities in the orbitofrontal regions, specifically between caudate-nucleus accumbens and thalamus-precentral gyrus, and differences in the executive control and reward regions. Neural network analysis demonstrated that abnormal ALFF brain regions can effectively classify addicted individuals from health controls.</div></div><div><h3>Conclusions</h3><div>This study showed that brain regions in IGD and TUD had similar ALFF changes during brief abstinence. However, FC analyses revealed contrasting results. FC in IGD increased, while it decreased in TUD. These differences may be due to IGD's internal craving, unlike nicotine for TUD. These findings deepen our understanding of the neural mechanisms of IGD.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111286"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000405","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Many studies have attempted to understand the neural basis of internet gaming disorder (IGD) to explore if IGD could be diagnosed as an addictive behavior. However, those findings were often inconsistent due to the participants having varying craving levels. Individual brain activities in the abstinence state are different from that in the neutral state. Therefore, exploring the responses of the brain during abstinence in IGD and comparing them with substance addiction is crucial in understanding this complex, craving-prone disorder.
Methods
Three groups of male participants were recruited: IGD (61), tobacco use disorder (TUD) (61), and health controls (80). Resting-state functional Magnetic Resonance Imaging data were collected after brief abstinence (not gaming/smoking for about 1.5 h). First, we identified abnormal brain regions with altered amplitude of low-frequency fluctuations (ALFF) in IGD and TUD. Then, using these regions as the regions of interest, we conducted a functional connectivity (FC) analysis to explore the similarities and differences between IGD and TUD. Finally, we used a neural network analysis to build a classification model based on ALFF results.
Results
The abnormal brain regions with altered ALFF were observed in both IGD and TUD, including the superior frontal gyrus, orbitofrontal cortex, precentral gyrus, caudate, and thalamus. FC analysis showed similarities in the orbitofrontal regions, specifically between caudate-nucleus accumbens and thalamus-precentral gyrus, and differences in the executive control and reward regions. Neural network analysis demonstrated that abnormal ALFF brain regions can effectively classify addicted individuals from health controls.
Conclusions
This study showed that brain regions in IGD and TUD had similar ALFF changes during brief abstinence. However, FC analyses revealed contrasting results. FC in IGD increased, while it decreased in TUD. These differences may be due to IGD's internal craving, unlike nicotine for TUD. These findings deepen our understanding of the neural mechanisms of IGD.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.