Recyclable Enzymatic Hydrolysis with Metal-Organic Framework Stabilized Humicola insolens Cutinase (HiC) for Potential PET Upcycling.

Chem & Bio Engineering Pub Date : 2024-08-30 eCollection Date: 2024-10-24 DOI:10.1021/cbe.4c00101
Audrianna Wu, Fanrui Sha, Shengyi Su, Omar K Farha
{"title":"Recyclable Enzymatic Hydrolysis with Metal-Organic Framework Stabilized Humicola insolens Cutinase (HiC) for Potential PET Upcycling.","authors":"Audrianna Wu, Fanrui Sha, Shengyi Su, Omar K Farha","doi":"10.1021/cbe.4c00101","DOIUrl":null,"url":null,"abstract":"<p><p>The degradation and recycling of plastics, such as poly(ethylene terephthalate) (PET), often require energy-intensive processes with significant waste generation. Moreover, prevalent methods primarily entail physical recycling, yielding subpar materials. In contrast, upcycling involves breaking down polymers into monomers, generating valuable chemicals and materials for alternative products. Enzyme-catalyzed depolymerization presents a promising approach to break down PET without the need for extreme conditions and unstable or toxic metal catalysts, which are typical of traditional recycling methods. However, the practical application of enzymes has been hindered by their high cost and low stability. In this study, we stabilized the enzyme Humicola insolens cutinase (HiC) by encapsulating it within a mesoporous zirconium-based metal-organic framework, NU-1000. HiC@NU-1000 exhibited a quantitative degradation of the PET surrogate, ethylene glycol dibenzoate (EGDB), with greater selectivity than native HiC in producing the fully hydrolyzed product benzoic acid in partial organic solvent. Additionally, the heterogeneous catalyst is also active toward the hydrolysis of PET and has demonstrated recyclability for at least four catalytic cycles. The HiC@NU-1000 model system represents a promising approach to stabilize industrially relevant enzymes under conditions involving elevated temperatures and organic solvents, offering a potential solution for relevant protein-related applications.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 9","pages":"798-804"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The degradation and recycling of plastics, such as poly(ethylene terephthalate) (PET), often require energy-intensive processes with significant waste generation. Moreover, prevalent methods primarily entail physical recycling, yielding subpar materials. In contrast, upcycling involves breaking down polymers into monomers, generating valuable chemicals and materials for alternative products. Enzyme-catalyzed depolymerization presents a promising approach to break down PET without the need for extreme conditions and unstable or toxic metal catalysts, which are typical of traditional recycling methods. However, the practical application of enzymes has been hindered by their high cost and low stability. In this study, we stabilized the enzyme Humicola insolens cutinase (HiC) by encapsulating it within a mesoporous zirconium-based metal-organic framework, NU-1000. HiC@NU-1000 exhibited a quantitative degradation of the PET surrogate, ethylene glycol dibenzoate (EGDB), with greater selectivity than native HiC in producing the fully hydrolyzed product benzoic acid in partial organic solvent. Additionally, the heterogeneous catalyst is also active toward the hydrolysis of PET and has demonstrated recyclability for at least four catalytic cycles. The HiC@NU-1000 model system represents a promising approach to stabilize industrially relevant enzymes under conditions involving elevated temperatures and organic solvents, offering a potential solution for relevant protein-related applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Publication Information Issue Editorial Masthead Advanced Separation Materials and Processes Advanced Separation Materials and Processes. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1