Haifeng Qi, Yueyue Jiao, Jianglin Duan, Nicholas F. Dummer, Bin Zhang, Yujing Ren, Stuart H. Taylor, Yong Qin, Kathrin Junge, Haijun Jiao, Graham J. Hutchings, Matthias Beller
{"title":"Tandem reductive amination and deuteration over a phosphorus-modified iron center","authors":"Haifeng Qi, Yueyue Jiao, Jianglin Duan, Nicholas F. Dummer, Bin Zhang, Yujing Ren, Stuart H. Taylor, Yong Qin, Kathrin Junge, Haijun Jiao, Graham J. Hutchings, Matthias Beller","doi":"10.1038/s41467-024-55722-9","DOIUrl":null,"url":null,"abstract":"<p>Deuterated amines are key building blocks for drug synthesis and the identification of metabolites of new pharmaceuticals, which drives the search for general, efficient, and widely applicable methods for the selective synthesis of such compounds. Here, we describe a multifunctional phosphorus-doped carbon-supported Fe catalyst with highly dispersed isolated metal sites that allow for tandem reductive amination-deuteration sequences. The optimal phosphorus-modified Fe-based catalyst shows excellent performance in terms of both reactivity and regioselectivity for a wide range of deuterated anilines, amines, bioactive complexes, and drugs (>50 examples). Experiments on the gram scale and on catalyst recycling show the application potential of this method. Beyond the direct applicability of the developed method, the described approach opens a perspective for the development of multifunctional single-atom catalysts in other value-adding organic syntheses.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55722-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deuterated amines are key building blocks for drug synthesis and the identification of metabolites of new pharmaceuticals, which drives the search for general, efficient, and widely applicable methods for the selective synthesis of such compounds. Here, we describe a multifunctional phosphorus-doped carbon-supported Fe catalyst with highly dispersed isolated metal sites that allow for tandem reductive amination-deuteration sequences. The optimal phosphorus-modified Fe-based catalyst shows excellent performance in terms of both reactivity and regioselectivity for a wide range of deuterated anilines, amines, bioactive complexes, and drugs (>50 examples). Experiments on the gram scale and on catalyst recycling show the application potential of this method. Beyond the direct applicability of the developed method, the described approach opens a perspective for the development of multifunctional single-atom catalysts in other value-adding organic syntheses.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.