Manipulating hydrogenation pathways enables economically viable electrocatalytic aldehyde-to-alcohol valorization

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2025-02-20 DOI:10.1073/pnas.2423542122
Ze-Cheng Yao, Jing Chai, Tang Tang, Liang Ding, Zhe Jiang, Jiaju Fu, Xiaoxia Chang, Bingjun Xu, Liang Zhang, Jin-Song Hu, Li-Jun Wan
{"title":"Manipulating hydrogenation pathways enables economically viable electrocatalytic aldehyde-to-alcohol valorization","authors":"Ze-Cheng Yao, Jing Chai, Tang Tang, Liang Ding, Zhe Jiang, Jiaju Fu, Xiaoxia Chang, Bingjun Xu, Liang Zhang, Jin-Song Hu, Li-Jun Wan","doi":"10.1073/pnas.2423542122","DOIUrl":null,"url":null,"abstract":"Electrocatalytic reduction (ECR) of furfural represents a sustainable route for biomass valorization. Unfortunately, traditional Cu-catalyzed ECR suffers from diversified product distribution and industrial-incompatible production rates, mainly caused by the intricate mechanism−performance relationship. Here, we manipulate hydrogenation pathways on Cu by introducing ceria as an auxiliary component, which enables the mechanism switching from proton-coupled electron transfer to electrochemical hydrogen-atom transfer (HAT) and thus high-speed furfural-to-furfuryl alcohol electroconversion. Theoretical and kinetic analyses show that oxygen-vacancy-rich ceria delivers an efficient formation−diffusion−hydrogenation chain of H* by diminishing H* adsorption. Spectroscopic characterizations indicate that Cu/ceria interfacial perimeter enriches the local furfural, synergistically lowering the barrier of the rate-determining HAT step across the perimeter. Our Cu/ceria catalyst realizes high-rate HAT-dominated ECR for electrosynthesis of single-product furfuryl alcohol, achieving a high production rate of 19.1 ± 0.4 mol h <jats:sup>−1</jats:sup> m <jats:sup>−2</jats:sup> and a Faradaic efficiency of 97 ± 1% at an economically viable partial current density of over 0.1 A cm <jats:sup>−2</jats:sup> . Our results demonstrate a highly efficient route for biofeedstock valorization with enhanced techno-economic feasibility.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"21 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2423542122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic reduction (ECR) of furfural represents a sustainable route for biomass valorization. Unfortunately, traditional Cu-catalyzed ECR suffers from diversified product distribution and industrial-incompatible production rates, mainly caused by the intricate mechanism−performance relationship. Here, we manipulate hydrogenation pathways on Cu by introducing ceria as an auxiliary component, which enables the mechanism switching from proton-coupled electron transfer to electrochemical hydrogen-atom transfer (HAT) and thus high-speed furfural-to-furfuryl alcohol electroconversion. Theoretical and kinetic analyses show that oxygen-vacancy-rich ceria delivers an efficient formation−diffusion−hydrogenation chain of H* by diminishing H* adsorption. Spectroscopic characterizations indicate that Cu/ceria interfacial perimeter enriches the local furfural, synergistically lowering the barrier of the rate-determining HAT step across the perimeter. Our Cu/ceria catalyst realizes high-rate HAT-dominated ECR for electrosynthesis of single-product furfuryl alcohol, achieving a high production rate of 19.1 ± 0.4 mol h −1 m −2 and a Faradaic efficiency of 97 ± 1% at an economically viable partial current density of over 0.1 A cm −2 . Our results demonstrate a highly efficient route for biofeedstock valorization with enhanced techno-economic feasibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Correction for Rashid et al., Nonpathological inflammation drives the development of an avian flight adaptation. Correction for Yao et al., An organic electrochemical neuron for a neuromorphic perception system. Correction for Sibille et al., Efficient mapping of the thalamocortical monosynaptic connectivity in vivo by tangential insertions of high-density electrodes in the cortex. Correction for Chae et al., Vulnerability to natural disasters and sustainable consumption: Unraveling political and regional differences. Correction for Deng et al., A coadapted KNL1 and spindle assembly checkpoint axis orchestrates precise mitosis in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1