Early Grain Growth in the Young Protostellar Disk HH 212 Supported by Dust Self-scattering Modeling

Ying-Chi Hu, 英祈 胡, Chin-Fei Lee, 景輝 李, Zhe-Yu Daniel Lin, 哲宇 林, Zhi-Yun Li, John J. Tobin, Shih-Ping Lai and 詩萍 賴
{"title":"Early Grain Growth in the Young Protostellar Disk HH 212 Supported by Dust Self-scattering Modeling","authors":"Ying-Chi Hu, 英祈 胡, Chin-Fei Lee, 景輝 李, Zhe-Yu Daniel Lin, 哲宇 林, Zhi-Yun Li, John J. Tobin, Shih-Ping Lai and 詩萍 賴","doi":"10.3847/1538-4357/adabe1","DOIUrl":null,"url":null,"abstract":"Grain growth in disks around young stars plays a crucial role in the formation of planets. Early grain growth has been suggested in the HH 212 protostellar disk by previous polarization observations. To confirm it and to determine the grain size, we analyze high-resolution multiband observations of the disk obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 9 (0.4 mm), 7 (0.9 mm), 6 (1.3 mm), and 3 (3 mm), as well as with the Very Large Array (VLA) in band Ka (9 mm), and we present new VLA data in bands Q (7 mm), K (1.3 cm), and X (3 cm). We adopt a parameterized flared disk model to fit the continuum maps of the disk in these bands and derive the opacities, albedos, and opacity spectral index β of the dust in the disk, taking into account the dust scattering ignored in the previous work modeling the multiband data of this source. For the VLA bands, we only include the band Q data in our modeling to avoid free–free emission contamination. The obtained opacities, albedos, and opacity spectral index β (with a value of ∼1.2) suggest that the upper limit of maximum grain size in the disk should be ∼130 μm, consistent with that implied in the previous polarization observations in band 7, supporting the grain growth in this disk. The values of the absorption opacities further highlight the need for a new dust composition model for Class 0/I disks.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adabe1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Grain growth in disks around young stars plays a crucial role in the formation of planets. Early grain growth has been suggested in the HH 212 protostellar disk by previous polarization observations. To confirm it and to determine the grain size, we analyze high-resolution multiband observations of the disk obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) in bands 9 (0.4 mm), 7 (0.9 mm), 6 (1.3 mm), and 3 (3 mm), as well as with the Very Large Array (VLA) in band Ka (9 mm), and we present new VLA data in bands Q (7 mm), K (1.3 cm), and X (3 cm). We adopt a parameterized flared disk model to fit the continuum maps of the disk in these bands and derive the opacities, albedos, and opacity spectral index β of the dust in the disk, taking into account the dust scattering ignored in the previous work modeling the multiband data of this source. For the VLA bands, we only include the band Q data in our modeling to avoid free–free emission contamination. The obtained opacities, albedos, and opacity spectral index β (with a value of ∼1.2) suggest that the upper limit of maximum grain size in the disk should be ∼130 μm, consistent with that implied in the previous polarization observations in band 7, supporting the grain growth in this disk. The values of the absorption opacities further highlight the need for a new dust composition model for Class 0/I disks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modulation of X-Ray Flux by Obscuration of Neutron Star Boundary Layer Tracing Coherent Gas Structures in the Central Region of the Starburst Galaxy NGC 253. II. Gas Excitation and Star Formation Tip of the Iceberg: Overmassive Black Holes at 4 < z < 7 Found by JWST Are Not Inconsistent with the Local M BH ... Dynamical and Atmospheric Characterization of the Substellar Companion HD 33632 Ab from Direct Imaging, Astrometry, and Radial-velocity Data* Boltzmann–Poisson Theory of Nonthermal Self-gravitating Gases, Cold Dark Matter, and Solar Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1