Toward Efficient Entropic Recycling by Mastering Ring–Chain Kinetics

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2025-02-19 DOI:10.1021/acs.macromol.4c03090
Jeffrey C. Foster, Isaiah T. Dishner, Joshua T. Damron, Vilmos Kertesz, Ilja Popovs, Tomonori Saito
{"title":"Toward Efficient Entropic Recycling by Mastering Ring–Chain Kinetics","authors":"Jeffrey C. Foster, Isaiah T. Dishner, Joshua T. Damron, Vilmos Kertesz, Ilja Popovs, Tomonori Saito","doi":"10.1021/acs.macromol.4c03090","DOIUrl":null,"url":null,"abstract":"Traditional chemical recycling approaches for condensation polymers suffer compounding energy losses and CO<sub>2</sub> emissions across multiple polymerization and depolymerization cycles. Entropic recycling can address these energy losses by entrapping free energy within the deconstruction products. Entropic recycling involves depolymerization to macrocyclic monomers, but such processes have not been feasible due to the high dilutions typically required to generate macrocyclic compounds. Here, we leverage selective catalysis to allow entropic recycling at concentrations 20–2000× higher than typical for macrocyclization reactions. We find that Ru-based olefin metathesis catalysts containing bulky iodine ligands significantly bias the ring–chain kinetic product distribution during ring-closing metathesis (RCM) toward the formation of oligomeric cycloalkenes. Further improvements in reaction concentration and macrocycle yield are obtained by using high catalyst loadings and by predisposing the alkene substrates to undergo favorable macrocyclization. These RCM optimizations translate effectively to cyclodepolymerization (CDP) of an olefin-containing polymer, with RCM and CDP affording similar macrocycle product distributions under identical reaction conditions. Macrocycle polymerization by entropy-driven ring-opening metathesis provides much higher molecular weight polymers than condensation polymerization of linear analogues, reducing the time to achieve high molecular weight from hours to minutes and enabling polymerization at room temperature. Our findings re-emphasize the importance of energy consumption during a polymer’s lifecycle and provide a framework for the design of efficient entropic recycling systems.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"4 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c03090","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional chemical recycling approaches for condensation polymers suffer compounding energy losses and CO2 emissions across multiple polymerization and depolymerization cycles. Entropic recycling can address these energy losses by entrapping free energy within the deconstruction products. Entropic recycling involves depolymerization to macrocyclic monomers, but such processes have not been feasible due to the high dilutions typically required to generate macrocyclic compounds. Here, we leverage selective catalysis to allow entropic recycling at concentrations 20–2000× higher than typical for macrocyclization reactions. We find that Ru-based olefin metathesis catalysts containing bulky iodine ligands significantly bias the ring–chain kinetic product distribution during ring-closing metathesis (RCM) toward the formation of oligomeric cycloalkenes. Further improvements in reaction concentration and macrocycle yield are obtained by using high catalyst loadings and by predisposing the alkene substrates to undergo favorable macrocyclization. These RCM optimizations translate effectively to cyclodepolymerization (CDP) of an olefin-containing polymer, with RCM and CDP affording similar macrocycle product distributions under identical reaction conditions. Macrocycle polymerization by entropy-driven ring-opening metathesis provides much higher molecular weight polymers than condensation polymerization of linear analogues, reducing the time to achieve high molecular weight from hours to minutes and enabling polymerization at room temperature. Our findings re-emphasize the importance of energy consumption during a polymer’s lifecycle and provide a framework for the design of efficient entropic recycling systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Recent Progress and Future Perspective in Slide-Ring Based Polymeric Materials Thiol–Ene Photopolymerization Enhances Liquid Crystal Ordering and Structural Regularity in Holographic Polymer Nanocomposites: A Coupled DPD-FDTD Simulation Designing a Block Copolymer Membrane for Selective Transport of Lactic Acid from Aqueous Mixtures Formation of Interpolyelectrolyte Complexes (IPECs) between Double-Hydrophilic Block Copolymers and Polysoaps: The Role of Hydrophobic Modification and Mixing Ratio as Structural Control Parameters Thioglycidyl Methacrylate-Based Reactive Polyalkylene Sulfide Resin as an Alternative Substrate for the Reaction with Elemental Sulfur: Peculiarities of Synthesis, Thermodynamic and Mechanical Properties of Sulfur-Rich Plastics with High Adhesive Tensile Strength and Chemical Resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1