Collagen hydrogels with similar polymer content but different microstructure — A comparative analysis of mechanical response

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2025-02-13 DOI:10.1016/j.jmbbm.2025.106922
Kim Busenhart , Julie Brun , Håvar Junker , Alexander E. Ehret , Alba Marcellan , Edoardo Mazza
{"title":"Collagen hydrogels with similar polymer content but different microstructure — A comparative analysis of mechanical response","authors":"Kim Busenhart ,&nbsp;Julie Brun ,&nbsp;Håvar Junker ,&nbsp;Alexander E. Ehret ,&nbsp;Alba Marcellan ,&nbsp;Edoardo Mazza","doi":"10.1016/j.jmbbm.2025.106922","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the mechanical properties of collagen hydrogels is essential for successful applications in tissue engineering and 3D cell culture. This study compares the mechanical behavior of two collagen hydrogel sheets with similar collagen content but different microstructures. One of the differences is that one gel is isotropic while the other has collagen fibers oriented towards the sheet’s plane. Experiments were performed at macro- (uniaxial tension in the sheet plane) and micro-length scale (AFM-based indentation perpendicular to the plane), and a discrete network model was developed to rationalize the observed differences. The experiments showed an order of magnitude difference in the uniaxial stiffness of the two gels. The softer gel exhibited near-incompressible behavior, while the stiffer gel showed a highly contractile response, with Poisson’s ratios around 8. Conversely, the apparent modulus from nano-indentation showed an opposite trend, with higher local stiffness for the gel that was softer in uniaxial tests. The computational model represents the material using a network of bi-linear connectors for the fibrous component and a compressible neo-Hookean material for the surrounding water-rich matrix, assumed to form due to interactions between collagen and water. Under the constraint of equal collagen content, model parameters were tuned to reproduce the observed response of both materials, considering the observed differences in fiber diameter. Importantly, the computations indicate that the difference in collagen orientation cannot explain the observed differences between the mechanical responses of the gels. Successful scaling between the two gels depends on the assumption that, due to their crimped initial state individual fibers primarily experience bending rather than tension when the material is stretched. Moreover, high tensile stretch of the fibers is shown to elicit large lateral contraction. Overall, the results demonstrate the wide range of mechanical properties displayed by hydrogels with similar collagen content, which can be rationalized using discrete models representative of their microstructure.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"166 ","pages":"Article 106922"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000384","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the mechanical properties of collagen hydrogels is essential for successful applications in tissue engineering and 3D cell culture. This study compares the mechanical behavior of two collagen hydrogel sheets with similar collagen content but different microstructures. One of the differences is that one gel is isotropic while the other has collagen fibers oriented towards the sheet’s plane. Experiments were performed at macro- (uniaxial tension in the sheet plane) and micro-length scale (AFM-based indentation perpendicular to the plane), and a discrete network model was developed to rationalize the observed differences. The experiments showed an order of magnitude difference in the uniaxial stiffness of the two gels. The softer gel exhibited near-incompressible behavior, while the stiffer gel showed a highly contractile response, with Poisson’s ratios around 8. Conversely, the apparent modulus from nano-indentation showed an opposite trend, with higher local stiffness for the gel that was softer in uniaxial tests. The computational model represents the material using a network of bi-linear connectors for the fibrous component and a compressible neo-Hookean material for the surrounding water-rich matrix, assumed to form due to interactions between collagen and water. Under the constraint of equal collagen content, model parameters were tuned to reproduce the observed response of both materials, considering the observed differences in fiber diameter. Importantly, the computations indicate that the difference in collagen orientation cannot explain the observed differences between the mechanical responses of the gels. Successful scaling between the two gels depends on the assumption that, due to their crimped initial state individual fibers primarily experience bending rather than tension when the material is stretched. Moreover, high tensile stretch of the fibers is shown to elicit large lateral contraction. Overall, the results demonstrate the wide range of mechanical properties displayed by hydrogels with similar collagen content, which can be rationalized using discrete models representative of their microstructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Effect of strain rate on the mechanical properties of human ribs: Insights from complete rib bending tests Influence of joint deformation on the auxetic behaviour of 3D printed polypropylene structures Editorial Board An analytical model for customizing reinforcement plasticity to address the strength-ductility trade-off in staggered composites Magnesium-substituted zinc-calcium hydroxyfluorapatite bioceramics for bone tissue engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1