Prediction of monthly occurrence number of scrub typhus in Ganzhou City, China, based on SARIMA and BPNN models

IF 8.8 3区 医学 Q1 Medicine Infectious Disease Modelling Pub Date : 2025-02-13 DOI:10.1016/j.idm.2025.02.009
Renfa Huang , Kailun Pan , Qingfeng Cai , Fen Lin , Hua Xue , Mingpeng Li , Yong Liao
{"title":"Prediction of monthly occurrence number of scrub typhus in Ganzhou City, China, based on SARIMA and BPNN models","authors":"Renfa Huang ,&nbsp;Kailun Pan ,&nbsp;Qingfeng Cai ,&nbsp;Fen Lin ,&nbsp;Hua Xue ,&nbsp;Mingpeng Li ,&nbsp;Yong Liao","doi":"10.1016/j.idm.2025.02.009","DOIUrl":null,"url":null,"abstract":"<div><div>Scrub typhus poses a serious public health risk globally. Forecasting the occurrence of the disease is essential for policymakers to develop prevention and control strategies. This study investigated the application of modelling techniques to predict the occurrence of scrub typhus and establishes an early warning system aimed at providing a foundational reference for its effective prevention and control. In this study, the monthly occurrence of scrub typhus in Ganzhou City from January 2008 to December 2022 was utilized as the training set for the first part of the analysis, while the data from January 2008 to December 2019 served as the training set for the second part. Based<sup>1</sup> on these data, the SARIMA model, the BPNN model, and the combined SARIMA-BPNN model were developed and validated using data from January to December 2023. The most effective model was then selected to predict the number of occurrences of scrub typhus for the years 2024 and 2025, respectively. The root mean square error (RMSE) and mean absolute error (MAE) of the BPNN (3-9-1) model, developed using data from January 2008 to December 2022, were 8.472 and 6.4, respectively. In contrast, the RMSE and MAE of the combined SARIMA-BPNN (1-9-1) model, constructed using data from January 2008 to December 2019, were 19.361 and 16.178, respectively. In addition, the BPNN (3-9-1) model predicted 284 cases of scrub typhus in Ganzhou City for 2024, and 163 cases for 2025. The BPNN (3-9-1) model demonstrated strong applicability in predicting the monthly occurrence of scrub typhus. Furthermore, incorporating three years of data on the occurrence of new crown outbreaks when developing a predictive model for infectious diseases can substantially enhance prediction accuracy.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 2","pages":"Pages 691-701"},"PeriodicalIF":8.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042725000107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Scrub typhus poses a serious public health risk globally. Forecasting the occurrence of the disease is essential for policymakers to develop prevention and control strategies. This study investigated the application of modelling techniques to predict the occurrence of scrub typhus and establishes an early warning system aimed at providing a foundational reference for its effective prevention and control. In this study, the monthly occurrence of scrub typhus in Ganzhou City from January 2008 to December 2022 was utilized as the training set for the first part of the analysis, while the data from January 2008 to December 2019 served as the training set for the second part. Based1 on these data, the SARIMA model, the BPNN model, and the combined SARIMA-BPNN model were developed and validated using data from January to December 2023. The most effective model was then selected to predict the number of occurrences of scrub typhus for the years 2024 and 2025, respectively. The root mean square error (RMSE) and mean absolute error (MAE) of the BPNN (3-9-1) model, developed using data from January 2008 to December 2022, were 8.472 and 6.4, respectively. In contrast, the RMSE and MAE of the combined SARIMA-BPNN (1-9-1) model, constructed using data from January 2008 to December 2019, were 19.361 and 16.178, respectively. In addition, the BPNN (3-9-1) model predicted 284 cases of scrub typhus in Ganzhou City for 2024, and 163 cases for 2025. The BPNN (3-9-1) model demonstrated strong applicability in predicting the monthly occurrence of scrub typhus. Furthermore, incorporating three years of data on the occurrence of new crown outbreaks when developing a predictive model for infectious diseases can substantially enhance prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Infectious Disease Modelling
Infectious Disease Modelling Mathematics-Applied Mathematics
CiteScore
17.00
自引率
3.40%
发文量
73
审稿时长
17 weeks
期刊介绍: Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.
期刊最新文献
A graph-theoretic framework for integrating mobility data into mathematical epidemic models Modeling hepatitis B-related deaths in China to achieve the WHO's impact target Prediction of monthly occurrence number of scrub typhus in Ganzhou City, China, based on SARIMA and BPNN models Controlling endemic foot-and-mouth disease: Vaccination is more important than movement bans. A simulation study in the Republic of Turkey Diphtheria transmission dynamics – Unveiling generation time and reproduction numbers from the 2022–2023 outbreak in Kano state, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1