Se-Hwan Lee , Zizhao Li , Ellen Y. Zhang , Dong Hwa Kim , Ziqi Huang , Yuna Heo , Sang Jin Lee , Hyun-Wook Kang , Jason A. Burdick , Robert L. Mauck , Su Chin Heo
{"title":"Precision repair of zone-specific meniscal injuries using a tunable extracellular matrix-based hydrogel system","authors":"Se-Hwan Lee , Zizhao Li , Ellen Y. Zhang , Dong Hwa Kim , Ziqi Huang , Yuna Heo , Sang Jin Lee , Hyun-Wook Kang , Jason A. Burdick , Robert L. Mauck , Su Chin Heo","doi":"10.1016/j.bioactmat.2025.02.013","DOIUrl":null,"url":null,"abstract":"<div><div>Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and the diverse biological and mechanical properties across the tissue. Conventional repair strategies do not replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative fetal/adult and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing fetal and adult DEM hydrogels, we identified distinct cellular responses, including that hydrogels with adult meniscus-derived DEM promote more fibrochondrogenic phenotypes. The incorporation of methacrylated hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of fetal and adult DEM with MeHA allowed for precise tuning of stiffness, influencing cell differentiation and closely mimicking native tissue environments. <em>In vivo</em> tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advance in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 400-413"},"PeriodicalIF":18.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000611","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Meniscus injuries present significant therapeutic challenges due to their limited self-healing capacity and the diverse biological and mechanical properties across the tissue. Conventional repair strategies do not replicate the complex zonal characteristics within the meniscus, resulting in suboptimal outcomes. In this study, we introduce an innovative fetal/adult and stiffness-tunable meniscus decellularized extracellular matrix (DEM)-based hydrogel system designed for precision repair of heterogeneous, zonal-dependent meniscus injuries. By synthesizing fetal and adult DEM hydrogels, we identified distinct cellular responses, including that hydrogels with adult meniscus-derived DEM promote more fibrochondrogenic phenotypes. The incorporation of methacrylated hyaluronic acid (MeHA) further refined the mechanical properties and injectability of the DEM-based hydrogels. The combination of fetal and adult DEM with MeHA allowed for precise tuning of stiffness, influencing cell differentiation and closely mimicking native tissue environments. In vivo tests confirmed the biocompatibility of hydrogels and their integration with native meniscus tissues. Furthermore, advanced 3D bioprinting techniques enabled the fabrication of hybrid hydrogels with biomaterial and mechanical gradients, effectively emulating the zonal properties of meniscus tissue and enhancing cell integration. This study represents a significant advance in meniscus tissue engineering, providing a promising platform for customized regenerative therapies across a range of heterogeneous fibrous connective tissues.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.