{"title":"Local and Global Finite-Time Synchronization of Fractional-Order Complex Dynamical Networks via Hybrid Impulsive Control","authors":"Chen Wei;Xiaoping Wang;Fangmin Ren;Zhigang Zeng","doi":"10.1109/TSMC.2024.3520135","DOIUrl":null,"url":null,"abstract":"This article focuses on achieving the finite-time synchronization (FTS) for fractional complex dynamical networks (FCDNs) using hybrid impulsive control. Initially, a novel framework for local FTS is developed, building upon the relaxed inequality <inline-formula> <tex-math>${}_{t_{k}}^{C}D_{t}^{\\alpha }V(t) \\le \\chi V(t) - \\eta $ </tex-math></inline-formula>. To expand the attraction domain within the local FTS framework, a piecewise fractional-order differential inequality based on impulsive control systems is proposed. Subsequently, a new hybrid control strategy is designed by integrating a simple feedback controller with an impulsive controller involving a finite number of impulses, which can be accurately calculated using the proposed impulsive degree. Additionally, a set of local/global FTS criteria is formulated, and the settling time can be explicitly estimated. Lastly, an illustrative example is presented to demonstrate the effectiveness of the derived results.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2312-2321"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819629/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article focuses on achieving the finite-time synchronization (FTS) for fractional complex dynamical networks (FCDNs) using hybrid impulsive control. Initially, a novel framework for local FTS is developed, building upon the relaxed inequality ${}_{t_{k}}^{C}D_{t}^{\alpha }V(t) \le \chi V(t) - \eta $ . To expand the attraction domain within the local FTS framework, a piecewise fractional-order differential inequality based on impulsive control systems is proposed. Subsequently, a new hybrid control strategy is designed by integrating a simple feedback controller with an impulsive controller involving a finite number of impulses, which can be accurately calculated using the proposed impulsive degree. Additionally, a set of local/global FTS criteria is formulated, and the settling time can be explicitly estimated. Lastly, an illustrative example is presented to demonstrate the effectiveness of the derived results.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.