{"title":"Multiobjective Multitask Optimization via Diversity- and Convergence-Oriented Knowledge Transfer","authors":"Yanchi Li;Dongcheng Li;Wenyin Gong;Qiong Gu","doi":"10.1109/TSMC.2024.3520526","DOIUrl":null,"url":null,"abstract":"Multiobjective multitask optimization (MO-MTO) aims to exploit the similarities among different multiobjective optimization tasks through knowledge transfer (KT), facilitating their simultaneous resolution. The effective design of KT techniques embedded in multiobjective evolutionary optimizers is crucial for enhancing the performance of multiobjective multitask evolutionary algorithms (MO-MTEAs). However, a significant limitation of existing KT techniques in MO-MTEAs is their equal treatment of particles/individuals for transferred knowledge reception, which can negatively impact the balance of diversity and convergence in population evolution. To remedy this limitation, this article proposes a new MO-MTEA, named MTEA-DCK, which incorporates diversity-oriented KT (DKT) and convergence-oriented KT (CKT) techniques tailored for different particles in the population. MTEA-DCK utilizes a strength-Pareto-based competitive mechanism to divide particles into winners and losers: 1) for winners, DKT is conducted via an intertask domain alignment approach to enhance population diversity and 2) for losers, CKT is executed within the unified search space to improve convergence. Additionally, to ensure robust performance on complex task combinations, we introduce two automatic parameter control strategies specifically designed for these KT techniques. MTEA-DCK was performed on 39 benchmark MO-MTO problems and demonstrated superior performance compared to eight state-of-the-art MO-MTEAs and six multiobjective evolutionary algorithms. Finally, we present three real-world MO-MTO application cases, where our approach also yielded better results than other algorithms.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 3","pages":"2367-2379"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833746/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiobjective multitask optimization (MO-MTO) aims to exploit the similarities among different multiobjective optimization tasks through knowledge transfer (KT), facilitating their simultaneous resolution. The effective design of KT techniques embedded in multiobjective evolutionary optimizers is crucial for enhancing the performance of multiobjective multitask evolutionary algorithms (MO-MTEAs). However, a significant limitation of existing KT techniques in MO-MTEAs is their equal treatment of particles/individuals for transferred knowledge reception, which can negatively impact the balance of diversity and convergence in population evolution. To remedy this limitation, this article proposes a new MO-MTEA, named MTEA-DCK, which incorporates diversity-oriented KT (DKT) and convergence-oriented KT (CKT) techniques tailored for different particles in the population. MTEA-DCK utilizes a strength-Pareto-based competitive mechanism to divide particles into winners and losers: 1) for winners, DKT is conducted via an intertask domain alignment approach to enhance population diversity and 2) for losers, CKT is executed within the unified search space to improve convergence. Additionally, to ensure robust performance on complex task combinations, we introduce two automatic parameter control strategies specifically designed for these KT techniques. MTEA-DCK was performed on 39 benchmark MO-MTO problems and demonstrated superior performance compared to eight state-of-the-art MO-MTEAs and six multiobjective evolutionary algorithms. Finally, we present three real-world MO-MTO application cases, where our approach also yielded better results than other algorithms.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.