Masked Video Pretraining Advances Real-World Video Denoising

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2025-01-10 DOI:10.1109/TMM.2024.3521818
Yi Jin;Xiaoxiao Ma;Rui Zhang;Huaian Chen;Yuxuan Gu;Pengyang Ling;Enhong Chen
{"title":"Masked Video Pretraining Advances Real-World Video Denoising","authors":"Yi Jin;Xiaoxiao Ma;Rui Zhang;Huaian Chen;Yuxuan Gu;Pengyang Ling;Enhong Chen","doi":"10.1109/TMM.2024.3521818","DOIUrl":null,"url":null,"abstract":"Learning-based video denoisers have attained state-of-the-art (SOTA) performances on public evaluation benchmarks. Nevertheless, they typically encounter significant performance drops when applied to unseen real-world data, owing to inherent data discrepancies. To address this problem, this work delves into the model pretraining techniques and proposes masked central frame modeling (MCFM), a new video pretraining approach that significantly improves the generalization ability of the denoiser. This proposal stems from a key observation: pretraining denoiser by reconstructing intact videos from the corrupted sequences, where the central frames are masked at a suitable probability, contributes to achieving superior performance on real-world data. Building upon MCFM, we introduce a robust video denoiser, named MVDenoiser, which is firstly pretrained on massive available ordinary videos for general video modeling, and then finetuned on costful real-world noisy/clean video pairs for noisy-to-clean mapping. Additionally, beyond the denoising model, we further establish a new paired real-world noisy video dataset (RNVD) to facilitate cross-dataset evaluation of generalization ability. Extensive experiments conducted across different datasets demonstrate that the proposed method achieves superior performance compared to existing methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"622-636"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10836851/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based video denoisers have attained state-of-the-art (SOTA) performances on public evaluation benchmarks. Nevertheless, they typically encounter significant performance drops when applied to unseen real-world data, owing to inherent data discrepancies. To address this problem, this work delves into the model pretraining techniques and proposes masked central frame modeling (MCFM), a new video pretraining approach that significantly improves the generalization ability of the denoiser. This proposal stems from a key observation: pretraining denoiser by reconstructing intact videos from the corrupted sequences, where the central frames are masked at a suitable probability, contributes to achieving superior performance on real-world data. Building upon MCFM, we introduce a robust video denoiser, named MVDenoiser, which is firstly pretrained on massive available ordinary videos for general video modeling, and then finetuned on costful real-world noisy/clean video pairs for noisy-to-clean mapping. Additionally, beyond the denoising model, we further establish a new paired real-world noisy video dataset (RNVD) to facilitate cross-dataset evaluation of generalization ability. Extensive experiments conducted across different datasets demonstrate that the proposed method achieves superior performance compared to existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的视频去噪器在公共评估基准上达到了最先进(SOTA)的性能。然而,由于固有的数据差异,当它们应用于不可见的真实世界数据时,性能通常会大幅下降。为解决这一问题,本研究深入研究了模型预训练技术,并提出了一种新的视频预训练方法--屏蔽中心帧建模(MCFM),它能显著提高去噪器的泛化能力。这一提议源于一个重要的观察结果:通过从损坏的序列中重建完整的视频来预训去噪器,其中中心帧以适当的概率被遮蔽,这有助于在真实世界的数据上实现卓越的性能。在 MCFM 的基础上,我们引入了一种名为 MVDenoiser 的鲁棒视频去噪器,它首先在海量可用普通视频上进行预训练,以建立通用视频模型,然后在成本高昂的真实世界噪声/清洁视频对上进行微调,以实现噪声到清洁的映射。此外,除了去噪模型之外,我们还进一步建立了一个新的真实世界噪声视频配对数据集(RNVD),以方便对泛化能力进行跨数据集评估。在不同数据集上进行的广泛实验证明,与现有方法相比,所提出的方法性能更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Frequency-Guided Spatial Adaptation for Camouflaged Object Detection Cross-Scatter Sparse Dictionary Pair Learning for Cross-Domain Classification Masked Video Pretraining Advances Real-World Video Denoising Point Patches Contrastive Learning for Enhanced Point Cloud Completion DPStyler: Dynamic PromptStyler for Source-Free Domain Generalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1