{"title":"DFPF-Net: Dynamically Focused Progressive Fusion Network for Remote Sensing Change Detection","authors":"Chengming Wang;Peng Duan;Jinjiang Li","doi":"10.1109/JSTARS.2025.3531658","DOIUrl":null,"url":null,"abstract":"Change detection (CD) has extensive applications and is a crucial method for identifying and localizing target changes. In recent years, various CD methods represented by convolutional neural network (CNN) and transformer have achieved significant success in effectively detecting difference areas in bitemporal remote sensing images. However, CNN still exhibit limitations in local feature extraction when confronted with pseudochanges caused by different object types across global scales. Although transformers can effectively detect true change regions due to their long-range dependencies, the shadows cast by buildings under varying lighting conditions can introduce localized noise in these areas. To address these challenges, we propose the dynamically focused progressive fusion network (DFPF-Net) to simultaneously tackle global and local noise influences. On one hand, we utilize a pyramid vision transformer (PVT) as a weight-shared siamese network to implement change detection, efficiently fusing multilevel features extracted from the pyramid structure through a residual based progressive enhanced fusion module (PEFM). On the other hand, we propose the dynamic change focus module, which employs attention mechanisms and edge detection algorithms to mitigate noise interference across varying ranges. Extensive experiments on four datasets demonstrate that DFPF-Net outperforms mainstream CD methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"5905-5918"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10845177/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Change detection (CD) has extensive applications and is a crucial method for identifying and localizing target changes. In recent years, various CD methods represented by convolutional neural network (CNN) and transformer have achieved significant success in effectively detecting difference areas in bitemporal remote sensing images. However, CNN still exhibit limitations in local feature extraction when confronted with pseudochanges caused by different object types across global scales. Although transformers can effectively detect true change regions due to their long-range dependencies, the shadows cast by buildings under varying lighting conditions can introduce localized noise in these areas. To address these challenges, we propose the dynamically focused progressive fusion network (DFPF-Net) to simultaneously tackle global and local noise influences. On one hand, we utilize a pyramid vision transformer (PVT) as a weight-shared siamese network to implement change detection, efficiently fusing multilevel features extracted from the pyramid structure through a residual based progressive enhanced fusion module (PEFM). On the other hand, we propose the dynamic change focus module, which employs attention mechanisms and edge detection algorithms to mitigate noise interference across varying ranges. Extensive experiments on four datasets demonstrate that DFPF-Net outperforms mainstream CD methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.