Bmco-o: a smart code smell detection method based on co-occurrences

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2025-02-21 DOI:10.1007/s10515-025-00486-9
Feiqiao Mao, Kaihang Zhong, Long Cheng
{"title":"Bmco-o: a smart code smell detection method based on co-occurrences","authors":"Feiqiao Mao,&nbsp;Kaihang Zhong,&nbsp;Long Cheng","doi":"10.1007/s10515-025-00486-9","DOIUrl":null,"url":null,"abstract":"<div><p>Code smell detection is a task aimed at identifying sub-optimal programming structures within code entities that may indicate problems requiring attention. It plays a crucial role in improving software quality. Numerous automatic or semi-automatic methods for code smell detection have been proposed. However, these methods are constrained by the manual setting of detection rules and thresholds, leading to subjective determinations, or they require large-scale labeled datasets for model training. In addition, they exhibit poor detection performance across different projects. Related studies have revealed the existence of co-occurrences among different types of code smells. Therefore, we propose a smart code smell detection method based on code smell co-occurrences, termed BMCo-O. The key insight is that code smell co-occurrences can assist in improving code smell detection. We introduce and utilize <i>code smell co-occurrence impact factor set</i>, a <i> code smell pre-filter mechanism</i>, and a <i>possibility mechanism</i>, which enable BMCo-O to demonstrate outstanding detection performance. To reduce manual intervention, we propose an <i>adaptive detection mechanism</i> that automatically adjusts parameters to detect different types of code smell in various software projects. As an initial attempt, we applied the proposed method to seven classical high-criticality code smells: Message Chain, Feature Envy, Spaghetti Code, Large Class, Complex Class, Refused Bequest, and Long Method. The evaluation results on benchmarks composed of open source software projects demonstrated that BMCo-O significantly outperforms the well-known and widely used methods in detecting these seven classical code smells, especially in F1, with improvements of 137%, 155%, 23%, 195%, 364%, 552% and 35%, respectively. To further verify its effectiveness in actual detection across different software projects, we also implemented a prototype of a new code smell detector using BMCo-O.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00486-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Code smell detection is a task aimed at identifying sub-optimal programming structures within code entities that may indicate problems requiring attention. It plays a crucial role in improving software quality. Numerous automatic or semi-automatic methods for code smell detection have been proposed. However, these methods are constrained by the manual setting of detection rules and thresholds, leading to subjective determinations, or they require large-scale labeled datasets for model training. In addition, they exhibit poor detection performance across different projects. Related studies have revealed the existence of co-occurrences among different types of code smells. Therefore, we propose a smart code smell detection method based on code smell co-occurrences, termed BMCo-O. The key insight is that code smell co-occurrences can assist in improving code smell detection. We introduce and utilize code smell co-occurrence impact factor set, a code smell pre-filter mechanism, and a possibility mechanism, which enable BMCo-O to demonstrate outstanding detection performance. To reduce manual intervention, we propose an adaptive detection mechanism that automatically adjusts parameters to detect different types of code smell in various software projects. As an initial attempt, we applied the proposed method to seven classical high-criticality code smells: Message Chain, Feature Envy, Spaghetti Code, Large Class, Complex Class, Refused Bequest, and Long Method. The evaluation results on benchmarks composed of open source software projects demonstrated that BMCo-O significantly outperforms the well-known and widely used methods in detecting these seven classical code smells, especially in F1, with improvements of 137%, 155%, 23%, 195%, 364%, 552% and 35%, respectively. To further verify its effectiveness in actual detection across different software projects, we also implemented a prototype of a new code smell detector using BMCo-O.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
Unveiling functional aspects in google play education app titles and descriptions influencing app success Bmco-o: a smart code smell detection method based on co-occurrences EmoReflex: an AI-powered emotion-centric developer insights platform MP: motion program synthesis with machine learning interpretability and knowledge graph analogy LLM-enhanced evolutionary test generation for untyped languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1