Mechano-Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-02-21 DOI:10.1002/adhm.202403389
Grace N Bechtel, Gabriella P Sugerman, Tatum Eades, Zuzanna Malinowska, Adam M Bush, Hamidreza Saber, Sapun H Parekh, Manuel K Rausch
{"title":"Mechano-Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics.","authors":"Grace N Bechtel, Gabriella P Sugerman, Tatum Eades, Zuzanna Malinowska, Adam M Bush, Hamidreza Saber, Sapun H Parekh, Manuel K Rausch","doi":"10.1002/adhm.202403389","DOIUrl":null,"url":null,"abstract":"<p><p>Thromboembolic diseases are a significant cause of mortality and are clinically treated enzymatically with tissue plasminogen activator (tPA). Interestingly, prior studies in fibrin fibers and fibrin gels have demonstrated that thrombolysis may be mechanically sensitive. This study aims to expand mechano-lytic studies to whole blood clots. Furthermore, this study investigates not only how mechanics impacts lysis but also how lysis impacts mechanics. Therefore, clots made from whole human blood are exposed to tPA while the clots are either stretched or unstretched. After, the resulting degree of clot lysis is measured by weighing the clots and by measuring the concentration of D-dimer in the surrounding bath. Additionally, each clot's mechanical properties are measured. This study finds that mechanical stretch accelerates loss in clot weight but does not impact the lysis rate as measured by D-dimer. Moreover, lysis not only removes clot volume but also reduces the remaining clot's stiffness and toughness. In summary, tPA-induced lysis of whole clot appears mechanically insensitive, but stretch reduces clot weight. Furthermore, results show that thrombolysis weakens clot. This suggests that thrombolysis may increase the risk of secondary embolizations but may also ease clot removal during thrombectomy, for example.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403389"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403389","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thromboembolic diseases are a significant cause of mortality and are clinically treated enzymatically with tissue plasminogen activator (tPA). Interestingly, prior studies in fibrin fibers and fibrin gels have demonstrated that thrombolysis may be mechanically sensitive. This study aims to expand mechano-lytic studies to whole blood clots. Furthermore, this study investigates not only how mechanics impacts lysis but also how lysis impacts mechanics. Therefore, clots made from whole human blood are exposed to tPA while the clots are either stretched or unstretched. After, the resulting degree of clot lysis is measured by weighing the clots and by measuring the concentration of D-dimer in the surrounding bath. Additionally, each clot's mechanical properties are measured. This study finds that mechanical stretch accelerates loss in clot weight but does not impact the lysis rate as measured by D-dimer. Moreover, lysis not only removes clot volume but also reduces the remaining clot's stiffness and toughness. In summary, tPA-induced lysis of whole clot appears mechanically insensitive, but stretch reduces clot weight. Furthermore, results show that thrombolysis weakens clot. This suggests that thrombolysis may increase the risk of secondary embolizations but may also ease clot removal during thrombectomy, for example.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Mechano-Lysis in Whole Blood Clots: On How Mechanics Affect Clot Lysis, and How Lysis Affects Clot Mechanics. Regional-Specific Decellularized Meniscus Extracellular Matrix Elastic Nanofiber Aerogels Regulate Meniscal Regeneration and Vascularization. Metastable Calcium Phosphate Cluster-Involved Mineralization Process Regulated by a Dual Biomolecule System Toward the Application in Dentinal Tubules Occlusion. Tetrodotoxin Delivery Pen Safely Uses Potent Natural Neurotoxin to Manage Severe Cutaneous Pain. Viscoelastic HyA Hydrogel Promotes Recovery of Muscle Quality and Vascularization in a Murine Model of Delayed Rotator Cuff Repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1