Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-02-20 DOI:10.1021/acs.jpcb.4c08225
Yusuke Okuno
{"title":"Quantitative Interpretation of Transverse Spin Relaxation by Translational Diffusion in Liquids.","authors":"Yusuke Okuno","doi":"10.1021/acs.jpcb.4c08225","DOIUrl":null,"url":null,"abstract":"<p><p>Intermolecular spin relaxation by translational diffusion of spin pairs has been widely used to study the properties of biomolecules in liquids. Notably, solvent paramagnetic relaxation enhancement (sPRE) arising from paramagnetic cosolutes has gained significant attention for various applications in structural biology, including the structural refinement of intrinsically disordered proteins, the elucidation of the molecular mechanisms driving cosolute-induced protein denaturation, and the characterization of residue-specific effective near-surface electrostatic potentials (ENS). Furthermore, sPRE has been extensively applied in magnetic resonance imaging (MRI), where paramagnetic ions, such as Gd(III)-based ions, are used as contrast agents. Among these applications, the transverse sPRE rate (Γ<sub>2</sub>) has predominantly been interpreted empirically as being proportional to the average interspin distance ⟨<i>r</i><sup>-6</sup>⟩<sub>norm</sub>. In this study, we present a rigorous theoretical interpretation of Γ<sub>2</sub> for spherically symmetric intermolecular potentials, demonstrating that it is proportional to ⟨<i>r</i><sup>-4</sup>⟩<sub>norm</sub>. We provide an explicit formula for calculating ⟨<i>r</i><sup>-4</sup>⟩<sub>norm</sub> without any adjustable parameters, offering valuable insights into the interaction potential independent of the type or strength of interactions. It has broad applicability, including the precise interpretation of the relaxation properties of the MRI contrast agents and calculation of the ENS.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08225","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intermolecular spin relaxation by translational diffusion of spin pairs has been widely used to study the properties of biomolecules in liquids. Notably, solvent paramagnetic relaxation enhancement (sPRE) arising from paramagnetic cosolutes has gained significant attention for various applications in structural biology, including the structural refinement of intrinsically disordered proteins, the elucidation of the molecular mechanisms driving cosolute-induced protein denaturation, and the characterization of residue-specific effective near-surface electrostatic potentials (ENS). Furthermore, sPRE has been extensively applied in magnetic resonance imaging (MRI), where paramagnetic ions, such as Gd(III)-based ions, are used as contrast agents. Among these applications, the transverse sPRE rate (Γ2) has predominantly been interpreted empirically as being proportional to the average interspin distance ⟨r-6norm. In this study, we present a rigorous theoretical interpretation of Γ2 for spherically symmetric intermolecular potentials, demonstrating that it is proportional to ⟨r-4norm. We provide an explicit formula for calculating ⟨r-4norm without any adjustable parameters, offering valuable insights into the interaction potential independent of the type or strength of interactions. It has broad applicability, including the precise interpretation of the relaxation properties of the MRI contrast agents and calculation of the ENS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Predicting Ionic Conductivity of Imidazolium-Based Ionic Liquid Mixtures Using Quantum-Mechanically Derived Partial Charges in the Condensed Phase. Bacterial Swimming and Accumulation on Endothelial Cell Surfaces. Intrinsically Disordered Proteins Can Behave as Different Polymers across Their Conformational Ensemble. Toward the Evolutionary Optimisation of Small Molecules Within Coarse-Grained Simulations: Training Molecules to Hide Behind Lipid Head Groups. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1