Light-Blocking Nanofiber Membranes Facilitating Physiologically Relevant In Situ Transmigration Assay.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-02-20 DOI:10.1021/acsbiomaterials.4c02096
Dohui Kim, Soojin Yi, Byeong-Ung Park, Seongsu Eom, Sinsung Kang, Dong Sung Kim, Hong Kyun Kim
{"title":"Light-Blocking Nanofiber Membranes Facilitating Physiologically Relevant In Situ Transmigration Assay.","authors":"Dohui Kim, Soojin Yi, Byeong-Ung Park, Seongsu Eom, Sinsung Kang, Dong Sung Kim, Hong Kyun Kim","doi":"10.1021/acsbiomaterials.4c02096","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofiber (NF) membranes have demonstrated considerable potential in cellular transmigration studies due to their resemblance to the biophysical properties of basement membranes, enabling cellular behaviors that closely mimic those observed in vivo. Despite their advantages, conventional NF membranes often encounter issues in transmigration assays due to their transparency, which leads to overlapping fluorescent signals from transmigrated and nontransmigrated cells. This overlap complicates the clear differentiation between these cell populations, making the quantitative evaluation of live-cell transmigration challenging. To address this issue, we developed a light-blocking nanofiber (LB-NF) membrane by incorporating carbon black into polycaprolactone NFs. This LB-NF membrane is designed not only to mimic the biophysical properties of the basement membrane but also to enable in situ analysis of transmigrated cells through its light-blocking properties. Our study demonstrated the effectiveness of the LB-NF membrane in a transmigration assay using human brain cerebral microvascular endothelial cells (HBEC-5i), enabling physiologically relevant cell transmigration while significantly enhancing the accuracy of in situ fluorescence detection. Furthermore, drug testing within a choroidal neovascularization model using the LB-NF membrane underscores its utility and potential impact on pharmaceutical development, particularly for diseases involving abnormal cell transmigration. Therefore, the developed LB-NF membrane represents a valuable tool for the precise assessment of in situ cellular transmigration and holds significant promise for advancing drug screening and therapeutic development.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiber (NF) membranes have demonstrated considerable potential in cellular transmigration studies due to their resemblance to the biophysical properties of basement membranes, enabling cellular behaviors that closely mimic those observed in vivo. Despite their advantages, conventional NF membranes often encounter issues in transmigration assays due to their transparency, which leads to overlapping fluorescent signals from transmigrated and nontransmigrated cells. This overlap complicates the clear differentiation between these cell populations, making the quantitative evaluation of live-cell transmigration challenging. To address this issue, we developed a light-blocking nanofiber (LB-NF) membrane by incorporating carbon black into polycaprolactone NFs. This LB-NF membrane is designed not only to mimic the biophysical properties of the basement membrane but also to enable in situ analysis of transmigrated cells through its light-blocking properties. Our study demonstrated the effectiveness of the LB-NF membrane in a transmigration assay using human brain cerebral microvascular endothelial cells (HBEC-5i), enabling physiologically relevant cell transmigration while significantly enhancing the accuracy of in situ fluorescence detection. Furthermore, drug testing within a choroidal neovascularization model using the LB-NF membrane underscores its utility and potential impact on pharmaceutical development, particularly for diseases involving abnormal cell transmigration. Therefore, the developed LB-NF membrane represents a valuable tool for the precise assessment of in situ cellular transmigration and holds significant promise for advancing drug screening and therapeutic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Human iPSC-Derived Motor Neuron Innervation Enhances the Differentiation of Muscle Bundles Engineered with Benchtop Fabrication Techniques. Biomedical Engineering on Smart Polymeric Nanoparticle-Hydrogel Platforms for Efficient Antibiotic Delivery against Bacterial-Infected Wounds. Light-Blocking Nanofiber Membranes Facilitating Physiologically Relevant In Situ Transmigration Assay. Toward Origami-Inspired In Vitro Cardiac Tissue Models. Adipose-Derived Stem Cell Specific Affinity Peptide-Modified Adipose Decellularized Scaffolds for Promoting Adipogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1