Optimized machine learning framework for cardiovascular disease diagnosis: a novel ethical perspective.

IF 2 3区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS BMC Cardiovascular Disorders Pub Date : 2025-02-20 DOI:10.1186/s12872-025-04550-w
Ghadah Alwakid, Farman Ul Haq, Noshina Tariq, Mamoona Humayun, Momina Shaheen, Marwa Alsadun
{"title":"Optimized machine learning framework for cardiovascular disease diagnosis: a novel ethical perspective.","authors":"Ghadah Alwakid, Farman Ul Haq, Noshina Tariq, Mamoona Humayun, Momina Shaheen, Marwa Alsadun","doi":"10.1186/s12872-025-04550-w","DOIUrl":null,"url":null,"abstract":"<p><p>Alignment of advanced cutting-edge technologies such as Artificial Intelligence (AI) has emerged as a significant driving force to achieve greater precision and timeliness in identifying cardiovascular diseases (CVDs). However, it is difficult to achieve high accuracy and reliability in CVD diagnostics due to complex clinical data and the selection and modeling process of useful features. Therefore, this paper studies advanced AI-based feature selection techniques and the application of AI technologies in the CVD classification. It uses methodologies such as Chi-square, Info Gain, Forward Selection, and Backward Elimination as an essence of cardiovascular health indicators into a refined eight-feature subset. This study emphasizes ethical considerations, including transparency, interpretability, and bias mitigation. This is achieved by employing unbiased datasets, fair feature selection techniques, and rigorous validation metrics to ensure fairness and trustworthiness in the AI-based diagnostic process. In addition, the integration of various Machine Learning (ML) models, encompassing Random Forest (RF), XGBoost, Decision Trees (DT), and Logistic Regression (LR), facilitates a comprehensive exploration of predictive performance. Among this diverse range of models, XGBoost stands out as the top performer, achieving exceptional scores with a 99% accuracy rate, 100% recall, 99% F1-measure, and 99% precision. Furthermore, we venture into dimensionality reduction, applying Principal Component Analysis (PCA) to the eight-feature subset, effectively refining it to a compact six-attribute feature subset. Once again, XGBoost shines as the model of choice, yielding outstanding results. It achieves accuracy, recall, F1-measure, and precision scores of 98%, 100%, 98%, and 97%, respectively, when applied to the feature subset derived from the combination of Chi-square and Forward Selection methods.</p>","PeriodicalId":9195,"journal":{"name":"BMC Cardiovascular Disorders","volume":"25 1","pages":"123"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cardiovascular Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12872-025-04550-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Alignment of advanced cutting-edge technologies such as Artificial Intelligence (AI) has emerged as a significant driving force to achieve greater precision and timeliness in identifying cardiovascular diseases (CVDs). However, it is difficult to achieve high accuracy and reliability in CVD diagnostics due to complex clinical data and the selection and modeling process of useful features. Therefore, this paper studies advanced AI-based feature selection techniques and the application of AI technologies in the CVD classification. It uses methodologies such as Chi-square, Info Gain, Forward Selection, and Backward Elimination as an essence of cardiovascular health indicators into a refined eight-feature subset. This study emphasizes ethical considerations, including transparency, interpretability, and bias mitigation. This is achieved by employing unbiased datasets, fair feature selection techniques, and rigorous validation metrics to ensure fairness and trustworthiness in the AI-based diagnostic process. In addition, the integration of various Machine Learning (ML) models, encompassing Random Forest (RF), XGBoost, Decision Trees (DT), and Logistic Regression (LR), facilitates a comprehensive exploration of predictive performance. Among this diverse range of models, XGBoost stands out as the top performer, achieving exceptional scores with a 99% accuracy rate, 100% recall, 99% F1-measure, and 99% precision. Furthermore, we venture into dimensionality reduction, applying Principal Component Analysis (PCA) to the eight-feature subset, effectively refining it to a compact six-attribute feature subset. Once again, XGBoost shines as the model of choice, yielding outstanding results. It achieves accuracy, recall, F1-measure, and precision scores of 98%, 100%, 98%, and 97%, respectively, when applied to the feature subset derived from the combination of Chi-square and Forward Selection methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Cardiovascular Disorders
BMC Cardiovascular Disorders CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.50
自引率
0.00%
发文量
480
审稿时长
1 months
期刊介绍: BMC Cardiovascular Disorders is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the heart and circulatory system, as well as related molecular and cell biology, genetics, pathophysiology, epidemiology, and controlled trials.
期刊最新文献
Adipokine isthmin-1 is a potential predictor of abnormal urine Na+ excretion and insulin resistance for primary hypertension. Effective discrimination of wide QRS complex tachycardia with a new algorithm - the Prelocalization Series Algorithm. Evaluation of the clinical value of CCTA as the preferred screening method in patients with chronic coronary syndrome. A nomogram to predict congestive heart failure in patients with acute kidney injury: a retrospective study based on the MIMIC-III database. Association between stress hyperglycemia ratio and contrast-induced nephropathy in ACS patients undergoing PCI: a retrospective cohort study from the MIMIC-IV database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1