{"title":"Anomalous relaxation and electrical impedance: A diffusion approach with adsorption-desorption at the interfaces.","authors":"M P Rosseto, R S Zola, E K Lenzi, L R Evangelista","doi":"10.1063/5.0239836","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates several strategies for modeling electrochemical impedance, in particular, exploring the effects of fractional calculus. It focuses on the theoretical approach for describing systems with anomalous diffusion; as a result, these effects can be analytically expressed as functions of frequency when different boundary conditions are considered. Starting with the normal case as a reference scenario, this study discusses how to increase the complexity of mathematical solutions by generalizing fundamental equations. The second strategy extends the continuity equation to include a fractional contribution. Subsequently, Fick's law is also extended, considering a case that incorporates a fractal derivative. Finally, we utilize electrochemical impedance to determine electric conductivity, analyze mean-square displacement, and connect it to the diffusion process.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0239836","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates several strategies for modeling electrochemical impedance, in particular, exploring the effects of fractional calculus. It focuses on the theoretical approach for describing systems with anomalous diffusion; as a result, these effects can be analytically expressed as functions of frequency when different boundary conditions are considered. Starting with the normal case as a reference scenario, this study discusses how to increase the complexity of mathematical solutions by generalizing fundamental equations. The second strategy extends the continuity equation to include a fractional contribution. Subsequently, Fick's law is also extended, considering a case that incorporates a fractal derivative. Finally, we utilize electrochemical impedance to determine electric conductivity, analyze mean-square displacement, and connect it to the diffusion process.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.