{"title":"Global synchronization theorem for coupled swarmalators.","authors":"Kevin O'Keeffe","doi":"10.1063/5.0245064","DOIUrl":null,"url":null,"abstract":"<p><p>The global stability of oscillator networks has attracted much recent attention. Ordinarily, the oscillators in such studies are motionless; their spatial degrees of freedom are either ignored (e.g., mean field models) or inactive (e.g., geometrically embedded networks like lattices). Yet many real-world oscillators are mobile, moving around in space as they synchronize in time. Here, we prove a global synchronization theorem for a simple model of such swarmalators where the units move on a 1D ring. This can be thought of as a generalization from oscillators connected on random networks to oscillators connected on temporal networks, where the edges are determined by the oscillators' movements.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245064","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The global stability of oscillator networks has attracted much recent attention. Ordinarily, the oscillators in such studies are motionless; their spatial degrees of freedom are either ignored (e.g., mean field models) or inactive (e.g., geometrically embedded networks like lattices). Yet many real-world oscillators are mobile, moving around in space as they synchronize in time. Here, we prove a global synchronization theorem for a simple model of such swarmalators where the units move on a 1D ring. This can be thought of as a generalization from oscillators connected on random networks to oscillators connected on temporal networks, where the edges are determined by the oscillators' movements.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.