{"title":"Targeting Glycolytic Enzymes with 3-Bromopyruvic Acid to Enhance the Efficacy of Interventional Embolization in Hepatocellular Carcinoma.","authors":"Min Wang, Xiao-Ning Wu, Xu Cheng, Xiao-Peng Guo, Zhuang-Lin Zeng, Song-Lin Song, Ai-Ping Cheng","doi":"10.1007/s11596-025-00009-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Tumour cells in a hypoxic state are more invasive, have stronger self-renewal capabilities, and are difficult to treat because of their ability to promote tumour recurrence and metastasis. The glycolysis inhibitor 3-bromopyruvic acid (3-BrPA) can completely inactivate glycolytic enzymes at extremely low drug concentrations, thereby exerting a strong inhibitory effect on the glucose energy metabolism of tumor cells. Therefore, we tested the inhibitory effect of 3-BrPA on hepatocellular carcinoma cells (HepG2) in vitro; then, we used the VX2 liver cancer model to study the antitumour effect of 3-BrPA combined with interventional embolization on liver cancer.</p><p><strong>Methods: </strong>In vitro, a CCK-8 assay was used to detect the inhibitory effect of different concentrations of 3-BrPA on HepG2 cells, and light microscopy confirmed that the HepG2 cells were completely dead. Western blotting was used to detect the expression of key proteins involved in apoptosis. A total of 30 New Zealand white rabbits were used to establish a liver cancer model and were randomly divided into 3 groups 2 weeks after tumor establishment: the control group was perfused with saline in the hepatic artery; the transcatheter arterial embolization (TAE) group was given TAE; and the experimental group was perfused with 3-BrPA combined with TAE. The tumor-bearing rabbits were killed one week after surgery. The tumor volume and tumor necrosis ratio were calculated via the histopathological examination.</p><p><strong>Results: </strong>In vitro, the inhibitory effect of 3-BrPA on HepG2 cells increased with increasing concentration. 3-BrPA (100 μmol/L) could induce the necrosis of HepG2 cells. Stimulation with 50 μmol/L 3-BrPA could activate the tumor cell apoptosis pathway. 3-BrPA combined with TAE treatment could significantly inhibit tumor growth and cause more complete tumor necrosis.</p><p><strong>Conclusion: </strong>3-BrPA not only has antitumour effects in vitro but can also significantly improve antitumour effects in the hypoxic microenvironment after embolization in vivo.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00009-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Tumour cells in a hypoxic state are more invasive, have stronger self-renewal capabilities, and are difficult to treat because of their ability to promote tumour recurrence and metastasis. The glycolysis inhibitor 3-bromopyruvic acid (3-BrPA) can completely inactivate glycolytic enzymes at extremely low drug concentrations, thereby exerting a strong inhibitory effect on the glucose energy metabolism of tumor cells. Therefore, we tested the inhibitory effect of 3-BrPA on hepatocellular carcinoma cells (HepG2) in vitro; then, we used the VX2 liver cancer model to study the antitumour effect of 3-BrPA combined with interventional embolization on liver cancer.
Methods: In vitro, a CCK-8 assay was used to detect the inhibitory effect of different concentrations of 3-BrPA on HepG2 cells, and light microscopy confirmed that the HepG2 cells were completely dead. Western blotting was used to detect the expression of key proteins involved in apoptosis. A total of 30 New Zealand white rabbits were used to establish a liver cancer model and were randomly divided into 3 groups 2 weeks after tumor establishment: the control group was perfused with saline in the hepatic artery; the transcatheter arterial embolization (TAE) group was given TAE; and the experimental group was perfused with 3-BrPA combined with TAE. The tumor-bearing rabbits were killed one week after surgery. The tumor volume and tumor necrosis ratio were calculated via the histopathological examination.
Results: In vitro, the inhibitory effect of 3-BrPA on HepG2 cells increased with increasing concentration. 3-BrPA (100 μmol/L) could induce the necrosis of HepG2 cells. Stimulation with 50 μmol/L 3-BrPA could activate the tumor cell apoptosis pathway. 3-BrPA combined with TAE treatment could significantly inhibit tumor growth and cause more complete tumor necrosis.
Conclusion: 3-BrPA not only has antitumour effects in vitro but can also significantly improve antitumour effects in the hypoxic microenvironment after embolization in vivo.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.