{"title":"Plasma treatment can efficiently increase the attachment of pancreatic circulatory tumor cells to the surface.","authors":"Seyed Mohammad Amin Mahdian, Azam Mahmoudi-Aznaveh, Seyed Mojtaba Mousavi, Bagher Larijani, Zahra Azizi, Hamid Akbari Javar","doi":"10.1007/s12672-025-01988-4","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic cancer ranks as the fourth most common cause of cancer-related fatalities globally, with a notably low 5-year relative survival rate. We need to immediately develop fast, dependable, and noninvasive diagnostic techniques that can accurately identify pancreatic cancer at an early stage. The research project created a straightforward but effective method for detecting and increasing the amount of tumor cells that could bind to polystyrene (PS) well plates. To significantly improve the adhesion of the pancreatic cancer cell line PANC-1 on PS well plates, a 5-min exposure to high-power oxygen plasma was implemented. This treatment caused a significant increase in surface energy and roughness. Surface characterization was assessed by utilizing an atomic force microscope and X-ray photoelectron spectroscopy. Water contact angle measurement is used to assess the level of wettability present on the treated surface. To determine how well the circulatory tumor cells (CTCs) model adheres to a plasma-treated surface (PTS), appropriate amounts of mCherry-labeled PANC-1 cells are mixed into a sample of blood cells to mimic clinical conditions. After applying plasma treatment, the experiment achieved a 96% success rate in binding at 2 h, specifically for the PANC-1 cell type. Moreover, the platform demonstrated a considerable ability to attach to cancerous cells compared to non-cancerous cells found in blood. To summarize, this study has shown that non-thermal plasma treatment could be a novel and efficient method for the better adhesion of pancreatic cancer cells, with the benefits of being cost-effective and quick. It is necessary for additional research to be conducted to confirm the clinical efficacy of the method.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"222"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01988-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer ranks as the fourth most common cause of cancer-related fatalities globally, with a notably low 5-year relative survival rate. We need to immediately develop fast, dependable, and noninvasive diagnostic techniques that can accurately identify pancreatic cancer at an early stage. The research project created a straightforward but effective method for detecting and increasing the amount of tumor cells that could bind to polystyrene (PS) well plates. To significantly improve the adhesion of the pancreatic cancer cell line PANC-1 on PS well plates, a 5-min exposure to high-power oxygen plasma was implemented. This treatment caused a significant increase in surface energy and roughness. Surface characterization was assessed by utilizing an atomic force microscope and X-ray photoelectron spectroscopy. Water contact angle measurement is used to assess the level of wettability present on the treated surface. To determine how well the circulatory tumor cells (CTCs) model adheres to a plasma-treated surface (PTS), appropriate amounts of mCherry-labeled PANC-1 cells are mixed into a sample of blood cells to mimic clinical conditions. After applying plasma treatment, the experiment achieved a 96% success rate in binding at 2 h, specifically for the PANC-1 cell type. Moreover, the platform demonstrated a considerable ability to attach to cancerous cells compared to non-cancerous cells found in blood. To summarize, this study has shown that non-thermal plasma treatment could be a novel and efficient method for the better adhesion of pancreatic cancer cells, with the benefits of being cost-effective and quick. It is necessary for additional research to be conducted to confirm the clinical efficacy of the method.