Baiyang Fu, Dan Luo, Chao Li, Yiwen Feng, Wenlong Liang
{"title":"Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy.","authors":"Baiyang Fu, Dan Luo, Chao Li, Yiwen Feng, Wenlong Liang","doi":"10.3389/fchem.2025.1537917","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising technology for diagnosing and treating malignant tumors. MNRs enable precise, targeted actions at the cellular level, addressing several limitations of conventional cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific drug delivery, and chemoresistance. This review provides an in-depth discussion of the propulsion mechanisms of MNRs, including chemical fuels, external fields (light, ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting their respective advantages and limitations. Additionally, we discuss novel approaches for tumor diagnosis, precision surgery, and drug delivery, emphasizing their potential clinical applications. Despite significant advancements, challenges such as biocompatibility, propulsion efficiency, and clinical translation persist. This review examines the current state of MNR applications and outlines future directions for their development, with the aim of enhancing their diagnostic and therapeutic efficacy and facilitating their integration into clinical practice.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1537917"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1537917","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising technology for diagnosing and treating malignant tumors. MNRs enable precise, targeted actions at the cellular level, addressing several limitations of conventional cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific drug delivery, and chemoresistance. This review provides an in-depth discussion of the propulsion mechanisms of MNRs, including chemical fuels, external fields (light, ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting their respective advantages and limitations. Additionally, we discuss novel approaches for tumor diagnosis, precision surgery, and drug delivery, emphasizing their potential clinical applications. Despite significant advancements, challenges such as biocompatibility, propulsion efficiency, and clinical translation persist. This review examines the current state of MNR applications and outlines future directions for their development, with the aim of enhancing their diagnostic and therapeutic efficacy and facilitating their integration into clinical practice.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.