Clinical efficacy of NIBS in enhancing neuroplasticity for stroke recovery

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-18 DOI:10.1016/j.jneumeth.2025.110399
Qing Ye , Xin Wang , Ting Li , Jing Xu , Xiangming Ye
{"title":"Clinical efficacy of NIBS in enhancing neuroplasticity for stroke recovery","authors":"Qing Ye ,&nbsp;Xin Wang ,&nbsp;Ting Li ,&nbsp;Jing Xu ,&nbsp;Xiangming Ye","doi":"10.1016/j.jneumeth.2025.110399","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>For stroke patients, a therapeutic approach named Non-invasive brain stimulation (NIBS) was applied and it has gained attention. This NIBS approach enhances the neuroplasticity and facilitates in functional Stroke Rehabilitation (SR) through regulating the brain activity. This NIBS has several advantages, but, the variability in patient responses, poor personalized treatment plans, and challenges in predicting rehabilitation stages may limit its clinical application. The generalized approaches are usually employed by the current SR methods. Here, the Patient-Centric (PC) factors that impacts neuroplasticity fails to be considered by the current SR methods. Thus, Real-Time mechanisms in monitoring and adapting to neural responses are lacking in the current SR methods.</div></div><div><h3>Methods</h3><div>A novel SR with Machine Learning (ML), (SR-ML) framework is suggested in this study. This suggested study integrates the patient-specific data, neuroimaging, and NIBS intervention models for the purpose of overcoming those issues. By optimising stimulation parameters based on patient profiles, the SR-ML framework uses ML algorithms. This integration will enhance the efficacy and facilitates the customized NIBS therapies. During NIBS sessions, the Time-Series (TS) neural data is analyzed and classified by the application of the Recurrent (NN) Neural Network (RNN). The temporal relationships and patterns indicating neuroplastic variations were effectively identified by this RNN.</div></div><div><h3>Results</h3><div>The stroke patients neuroplasticity signs was improved, and effective rehabilitation outcomes was attained by the suggested SR-ML model, and it was demonstrated by the outcomes of the simulation. The accuracy and adaptability of NIBS interventions were enhanced by the potential of ML, and it is highlighted by the outcomes.</div></div><div><h3>Conclusion</h3><div>A revolutionized development in the customized SR was facilitated by the suggested SR-ML framework, as it integrates ML with NIBS. More effective and PC neurotherapeutic approaches was attained by RT classification and optimization of simulation protocols. Thus, the limitations in the current SR methods was addressed by the effective method</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110399"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000408","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

For stroke patients, a therapeutic approach named Non-invasive brain stimulation (NIBS) was applied and it has gained attention. This NIBS approach enhances the neuroplasticity and facilitates in functional Stroke Rehabilitation (SR) through regulating the brain activity. This NIBS has several advantages, but, the variability in patient responses, poor personalized treatment plans, and challenges in predicting rehabilitation stages may limit its clinical application. The generalized approaches are usually employed by the current SR methods. Here, the Patient-Centric (PC) factors that impacts neuroplasticity fails to be considered by the current SR methods. Thus, Real-Time mechanisms in monitoring and adapting to neural responses are lacking in the current SR methods.

Methods

A novel SR with Machine Learning (ML), (SR-ML) framework is suggested in this study. This suggested study integrates the patient-specific data, neuroimaging, and NIBS intervention models for the purpose of overcoming those issues. By optimising stimulation parameters based on patient profiles, the SR-ML framework uses ML algorithms. This integration will enhance the efficacy and facilitates the customized NIBS therapies. During NIBS sessions, the Time-Series (TS) neural data is analyzed and classified by the application of the Recurrent (NN) Neural Network (RNN). The temporal relationships and patterns indicating neuroplastic variations were effectively identified by this RNN.

Results

The stroke patients neuroplasticity signs was improved, and effective rehabilitation outcomes was attained by the suggested SR-ML model, and it was demonstrated by the outcomes of the simulation. The accuracy and adaptability of NIBS interventions were enhanced by the potential of ML, and it is highlighted by the outcomes.

Conclusion

A revolutionized development in the customized SR was facilitated by the suggested SR-ML framework, as it integrates ML with NIBS. More effective and PC neurotherapeutic approaches was attained by RT classification and optimization of simulation protocols. Thus, the limitations in the current SR methods was addressed by the effective method
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Editorial Board Establishing the electrical physiological feasibility of the rabbit median nerve as an experimental model for carpal tunnel syndrome. Enhancing therapeutic efficacy of Fingolimod via Intranasal Delivery in an Ethidium Bromide-induced Model of Multiple Sclerosis. Multi-view graph fusion of self-weighted EEG feature representations for speech imagery decoding. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1