The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype.

IF 6.5 2区 医学 Q1 ONCOLOGY NPJ Breast Cancer Pub Date : 2025-02-20 DOI:10.1038/s41523-025-00723-0
Polina Turova, Vladimir Kushnarev, Oleg Baranov, Anna Butusova, Sofia Menshikova, Sheila T Yong, Anna Nadiryan, Zoia Antysheva, Svetlana Khorkova, Mariia V Guryleva, Alexander Bagaev, Jochen K Lennerz, Konstantin Chernyshov, Nikita Kotlov
{"title":"The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype.","authors":"Polina Turova, Vladimir Kushnarev, Oleg Baranov, Anna Butusova, Sofia Menshikova, Sheila T Yong, Anna Nadiryan, Zoia Antysheva, Svetlana Khorkova, Mariia V Guryleva, Alexander Bagaev, Jochen K Lennerz, Konstantin Chernyshov, Nikita Kotlov","doi":"10.1038/s41523-025-00723-0","DOIUrl":null,"url":null,"abstract":"<p><p>Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning algorithms, we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct subtype. BCC also redefined the PAM50 Normal subtype into other subtypes, disputing its classification as a unique molecular group. Our statistical analysis not only confirmed the reproducibility and accuracy of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only improves treatment stratification, but also uncovers novel molecular and immunohistochemical features associated with the HER2-low and HER2-high subtypes, thereby advancing our understanding of breast cancer heterogeneity and providing guidance in precision oncology.</p>","PeriodicalId":19247,"journal":{"name":"NPJ Breast Cancer","volume":"11 1","pages":"19"},"PeriodicalIF":6.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41523-025-00723-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Current breast cancer classification methods, particularly immunohistochemistry and PAM50, face challenges in accurately characterizing the HER2-low subtype, a therapeutically relevant entity with distinct biological features. This notable gap can lead to misclassification, resulting in inappropriate treatment decisions and suboptimal patient outcomes. Leveraging RNA-seq and machine-learning algorithms, we developed the Breast Cancer Classifier (BCC), a unique transcriptomic classifier for more precise breast cancer subtyping, specifically by delineating and incorporating HER2-low as a distinct subtype. BCC also redefined the PAM50 Normal subtype into other subtypes, disputing its classification as a unique molecular group. Our statistical analysis not only confirmed the reproducibility and accuracy of BCC, but also revealed similarities in prognostic characteristics between the HER2-low and Basal subtypes. Addressing this gap in breast cancer classification is clinically significant because it not only improves treatment stratification, but also uncovers novel molecular and immunohistochemical features associated with the HER2-low and HER2-high subtypes, thereby advancing our understanding of breast cancer heterogeneity and providing guidance in precision oncology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Breast Cancer
NPJ Breast Cancer Medicine-Pharmacology (medical)
CiteScore
10.10
自引率
1.70%
发文量
122
审稿时长
9 weeks
期刊介绍: npj Breast Cancer publishes original research articles, reviews, brief correspondence, meeting reports, editorial summaries and hypothesis generating observations which could be unexplained or preliminary findings from experiments, novel ideas, or the framing of new questions that need to be solved. Featured topics of the journal include imaging, immunotherapy, molecular classification of disease, mechanism-based therapies largely targeting signal transduction pathways, carcinogenesis including hereditary susceptibility and molecular epidemiology, survivorship issues including long-term toxicities of treatment and secondary neoplasm occurrence, the biophysics of cancer, mechanisms of metastasis and their perturbation, and studies of the tumor microenvironment.
期刊最新文献
Real-World outcomes with sacituzumab govitecan among breast cancer patients with central nervous system metastases. Sequence of therapy impact on older women with comorbidities and triple-negative or HER2-positive breast cancer. Temporal evolution of breast cancer brain metastases treatments and outcomes. The Breast Cancer Classifier refines molecular breast cancer classification to delineate the HER2-low subtype. Lessons learned from a candidate gene study investigating aromatase inhibitor treatment outcome in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1