Toxoplasma gondii PROP1 is critical for autophagy and parasite viability during chronic infection.

IF 3.1 2区 生物学 Q2 MICROBIOLOGY mSphere Pub Date : 2025-03-25 Epub Date: 2025-02-21 DOI:10.1128/msphere.00829-24
Pariyamon Thaprawat, Fengrong Wang, Shreya Chalasani, Tracey L Schultz, Manlio Di Cristina, Vern B Carruthers
{"title":"<i>Toxoplasma gondii</i> PROP1 is critical for autophagy and parasite viability during chronic infection.","authors":"Pariyamon Thaprawat, Fengrong Wang, Shreya Chalasani, Tracey L Schultz, Manlio Di Cristina, Vern B Carruthers","doi":"10.1128/msphere.00829-24","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy is an important cellular process involving lysosomal degradation of cytoplasmic components, facilitated by autophagy-related proteins. In the protozoan parasite <i>Toxoplasma gondii</i>, autophagy has been demonstrated to play a key role in adapting to stress and the persistence of chronic infection. Despite limited knowledge about the core autophagy machinery in <i>T. gondii</i>, two PROPPIN family proteins (TgPROP1 and TgPROP2) have been identified with homology to Atg18/WIPI. Prior research in acute-stage tachyzoites suggests that TgPROP2 is predominantly involved in a non-autophagic function, specifically apicoplast biogenesis, while TgPROP1 may be involved in canonical autophagy. Here, we investigated the distinct roles of TgPROP1 and TgPROP2 in chronic stage <i>T. gondii</i> bradyzoites, revealing a critical role for TgPROP1, but not TgPROP2, in bradyzoite autophagy. Conditional knockdown of TgPROP2 did not impair bradyzoite autophagy. In contrast, TgPROP1 KO parasites had impaired autolysosome formation, reduced cyst burdens in chronically infected mice, and decreased viability. Together, our findings clarify the indispensable role of TgPROP1 to <i>T. gondii</i> autophagy and chronic infection.</p><p><strong>Importance: </strong>It is estimated that up to a third of the human population is chronically infected with <i>Toxoplasma gondii</i>; however, little is known about how this parasite persists long term within its hosts. Autophagy is a self-eating pathway that has recently been shown to play a key role in parasite persistence, yet few proteins that carry out this process during <i>T. gondii</i> chronic infection are known. Here, we provide evidence for a non-redundant role of TgPROP1, a protein important in the early steps of the autophagy pathway. Genetic disruption of TgPROP1 resulted in impaired autophagy and chronic infection of mice. Our results reveal a critical role for TgPROP1 in autophagy and underscore the importance of this pathway in parasite persistence.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0082924"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00829-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Macroautophagy is an important cellular process involving lysosomal degradation of cytoplasmic components, facilitated by autophagy-related proteins. In the protozoan parasite Toxoplasma gondii, autophagy has been demonstrated to play a key role in adapting to stress and the persistence of chronic infection. Despite limited knowledge about the core autophagy machinery in T. gondii, two PROPPIN family proteins (TgPROP1 and TgPROP2) have been identified with homology to Atg18/WIPI. Prior research in acute-stage tachyzoites suggests that TgPROP2 is predominantly involved in a non-autophagic function, specifically apicoplast biogenesis, while TgPROP1 may be involved in canonical autophagy. Here, we investigated the distinct roles of TgPROP1 and TgPROP2 in chronic stage T. gondii bradyzoites, revealing a critical role for TgPROP1, but not TgPROP2, in bradyzoite autophagy. Conditional knockdown of TgPROP2 did not impair bradyzoite autophagy. In contrast, TgPROP1 KO parasites had impaired autolysosome formation, reduced cyst burdens in chronically infected mice, and decreased viability. Together, our findings clarify the indispensable role of TgPROP1 to T. gondii autophagy and chronic infection.

Importance: It is estimated that up to a third of the human population is chronically infected with Toxoplasma gondii; however, little is known about how this parasite persists long term within its hosts. Autophagy is a self-eating pathway that has recently been shown to play a key role in parasite persistence, yet few proteins that carry out this process during T. gondii chronic infection are known. Here, we provide evidence for a non-redundant role of TgPROP1, a protein important in the early steps of the autophagy pathway. Genetic disruption of TgPROP1 resulted in impaired autophagy and chronic infection of mice. Our results reveal a critical role for TgPROP1 in autophagy and underscore the importance of this pathway in parasite persistence.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弓形虫 PROP1 对慢性感染期间的自噬和寄生虫存活率至关重要。
巨噬是一个重要的细胞过程,涉及溶酶体降解细胞质成分,由自噬相关蛋白促进。在原生动物寄生虫刚地弓形虫中,自噬已被证明在适应压力和持续慢性感染方面发挥关键作用。尽管对弓形虫核心自噬机制的了解有限,但已经鉴定出两个PROPPIN家族蛋白(TgPROP1和TgPROP2)与Atg18/WIPI同源。先前对急性期速殖子的研究表明,TgPROP2主要参与非自噬功能,特别是顶质体的生物发生,而TgPROP1可能参与典型自噬。在这里,我们研究了TgPROP1和TgPROP2在慢性期弓形虫慢殖子中的不同作用,揭示了TgPROP1而不是TgPROP2在慢殖子自噬中的关键作用。条件性敲低TgPROP2并不影响缓殖子的自噬。相比之下,TgPROP1 KO寄生虫破坏了慢性感染小鼠的自溶酶体形成,减少了囊肿负担,降低了生存能力。总之,我们的发现阐明了TgPROP1在弓形虫自噬和慢性感染中不可或缺的作用。重要性:据估计,多达三分之一的人口慢性感染了刚地弓形虫;然而,人们对这种寄生虫如何在宿主体内长期存活知之甚少。自噬是一种自食途径,最近已被证明在寄生虫持续存在中发挥关键作用,但在弓形虫慢性感染期间执行这一过程的蛋白质尚不清楚。在这里,我们提供了TgPROP1的非冗余作用的证据,TgPROP1是一种在自噬途径的早期步骤中重要的蛋白质。TgPROP1基因破坏导致小鼠自噬受损和慢性感染。我们的研究结果揭示了TgPROP1在自噬中的关键作用,并强调了该途径在寄生虫持久性中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mSphere
mSphere Immunology and Microbiology-Microbiology
CiteScore
8.50
自引率
2.10%
发文量
192
审稿时长
11 weeks
期刊介绍: mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.
期刊最新文献
Molecular evolution and diversity of isomerase-reductase clusters involved in the bacterial metabolism of glycosaminoglycans. Contrasted impacts of commercial diets and rearing water on Aedes aegypti fitness and microbiota. Age and antibiotic use influence longitudinal dynamics of the upper respiratory microbiome in children with recurrent acute otitis media. T and B cell responses following primary COVID-19 vaccination with CoronaVac and two heterologous BNT162b2 booster doses. Is CepA from Klebsiella pneumoniae a biocide pump? Evidence suggests a metal efflux function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1