ChIP provides 10-fold microbial DNA enrichment from tissue while minimizing bias.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2025-02-21 DOI:10.1007/s11033-025-10330-8
Shrikant Bhute, Jon G Sanders, Se Jin Song, Sydney Lavoie, Austin Swafford, Caitlin Guccione, Lucas Patel, Antonio Gonzalez, Michelle G Rooks, Rob Knight, Andrew Bartko
{"title":"ChIP provides 10-fold microbial DNA enrichment from tissue while minimizing bias.","authors":"Shrikant Bhute, Jon G Sanders, Se Jin Song, Sydney Lavoie, Austin Swafford, Caitlin Guccione, Lucas Patel, Antonio Gonzalez, Michelle G Rooks, Rob Knight, Andrew Bartko","doi":"10.1007/s11033-025-10330-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Host DNA depletion is a critical tool for accessing the microbiomes of samples that have a small amount of microbial DNA contained in a high host background. Of critical practical importance is the ability to identify microbial DNA sequences in frozen tissue specimens. Here, we compare four existing commercial methods and two newly introduced methods involving chromatin immunoprecipitation (ChIP) on frozen human and pig intestinal biopsies.</p><p><strong>Results: </strong>We find that all methods that rely on differential lysis of host and microbial cells introduce substantial biases as assessed by 16 S rRNA gene amplicon profiling. However, ChIP enables 10-fold enrichment of microbial DNA while introducing less bias, sufficient to make assessment possible against background, in both pigs and humans.</p><p><strong>Conclusions: </strong>We recommend ChIP in situations where host depletion is important but where minimizing taxonomic bias is essential, and the MolYsis or Zymo kit for situations where host depletion level is more important than taxonomic bias.</p><p><strong>Conclusions: </strong>We recommend ChIP in situations where host depletion is important but where minimizing taxonomic bias is essential, and the MolYsis or Zymo kit for situations where host depletion level is more important than taxonomic bias.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"258"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10330-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Host DNA depletion is a critical tool for accessing the microbiomes of samples that have a small amount of microbial DNA contained in a high host background. Of critical practical importance is the ability to identify microbial DNA sequences in frozen tissue specimens. Here, we compare four existing commercial methods and two newly introduced methods involving chromatin immunoprecipitation (ChIP) on frozen human and pig intestinal biopsies.

Results: We find that all methods that rely on differential lysis of host and microbial cells introduce substantial biases as assessed by 16 S rRNA gene amplicon profiling. However, ChIP enables 10-fold enrichment of microbial DNA while introducing less bias, sufficient to make assessment possible against background, in both pigs and humans.

Conclusions: We recommend ChIP in situations where host depletion is important but where minimizing taxonomic bias is essential, and the MolYsis or Zymo kit for situations where host depletion level is more important than taxonomic bias.

Conclusions: We recommend ChIP in situations where host depletion is important but where minimizing taxonomic bias is essential, and the MolYsis or Zymo kit for situations where host depletion level is more important than taxonomic bias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChIP 可将组织中的微生物 DNA 富集 10 倍,同时将偏差降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
Bioprospecting of 101 facultative rumen bacterial isolates through comprehensive genome analysis. Genome-wide identification and expression analysis of the lipoxygenase gene family in sesame reveals regulatory networks in response to abiotic stress. Molecular mechanisms of Hippo pathway in tumorigenesis: therapeutic implications. Tracking genetic diversity in amur tigers: a long-term study using microsatellites in Southwest Primorye, Russia. XadA-like adhesin XADA2 regulates biofilm formation in X. fastidiosa subsp. fastidiosa putatively by engaging oleic-acid derived oxylipins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1