The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2025-02-19 DOI:10.1016/j.phrs.2025.107666
Xu Zhao , Chao Chen , Hui Qiu , Jing Liu , Nan Shao , Mengmeng Guo , Yuanye Jiang , Juanjuan Zhao , Lin Xu
{"title":"The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns","authors":"Xu Zhao ,&nbsp;Chao Chen ,&nbsp;Hui Qiu ,&nbsp;Jing Liu ,&nbsp;Nan Shao ,&nbsp;Mengmeng Guo ,&nbsp;Yuanye Jiang ,&nbsp;Juanjuan Zhao ,&nbsp;Lin Xu","doi":"10.1016/j.phrs.2025.107666","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"214 ","pages":"Article 107666"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104366182500091X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
Editorial Board Cleavage of the TrkB-FL Receptor During Epileptogenesis: Insights from a Kainic Acid-Induced Model of Epilepsy and Human Samples. Commentary on "Assessment of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and other antidiabetic agents in Alzheimer's disease: A population-based study". Response to letter to the editor: Letter by Chen et al. Regarding Article, "Assessment of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and other antidiabetic agents in Alzheimer's disease: A population-based study". CHPF2 as a novel biomarker and ponicidin as a potential therapeutic agent in hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1