Evaluation of drug delivery vehicles for improved transduction of oncolytic adenoviruses in solid tumor tissue.

IF 1.5 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL Upsala journal of medical sciences Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.48101/ujms.v130.11217
Erik Yngve, Sofie Ingvast, Olle Korsgren, Di Yu
{"title":"Evaluation of drug delivery vehicles for improved transduction of oncolytic adenoviruses in solid tumor tissue.","authors":"Erik Yngve, Sofie Ingvast, Olle Korsgren, Di Yu","doi":"10.48101/ujms.v130.11217","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oncolytic viruses are promising tools for immune stimulatory gene therapy of cancer, but their clinical effect on solid tumors have so far been limited. Transduction of the target tumor cells is limited by both extracellular matrix that blocks viral spread within the solid tumor tissue and electrostatic forces that inhibit virus from binding its entry receptor on the cell surface. The enzymes <i>hyaluronidase</i> and <i>collagenase</i> and the polycations diethylaminoethyl (<i>DEAE)-dextran</i>, <i>branched Polyethylenimine (PEI)</i> and <i>protamine sulfate</i> have previously shown potential to improve gene transfer in different forms of viral gene therapy, since they may help the virus to overcome these barriers. In this study, we compared the transduction-enhancing potential of these substances when used as vehicles for adenoviral transduction in solid tumor tissue.</p><p><strong>Methods: </strong>Subcutaneous tumors of pancreatic ductal adenocarcinoma were established in mice and treated with a mix of adenoviral vector Adf35(GFP-Luc) and either one of the selected vehicles. Transduction efficacy was determined by quantification of the viral transgene expression level using live imaging.</p><p><strong>Results: </strong>Addition of hyaluronidase tripled the transgene expression of Adf35(GFP-Luc) when compared to virus alone. No such positive effect was seen for the other tested vehicles.</p><p><strong>Conclusions: </strong>Out of the tested candidates, hyaluronidase showed the best potential to facilitate viral spread in tumor tissue and transduction of tumor cells. Therefore, hyaluronidase may be used as vehicle to improve clinical efficacy of oncolytic virotherapies.</p>","PeriodicalId":23458,"journal":{"name":"Upsala journal of medical sciences","volume":"130 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upsala journal of medical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.48101/ujms.v130.11217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oncolytic viruses are promising tools for immune stimulatory gene therapy of cancer, but their clinical effect on solid tumors have so far been limited. Transduction of the target tumor cells is limited by both extracellular matrix that blocks viral spread within the solid tumor tissue and electrostatic forces that inhibit virus from binding its entry receptor on the cell surface. The enzymes hyaluronidase and collagenase and the polycations diethylaminoethyl (DEAE)-dextran, branched Polyethylenimine (PEI) and protamine sulfate have previously shown potential to improve gene transfer in different forms of viral gene therapy, since they may help the virus to overcome these barriers. In this study, we compared the transduction-enhancing potential of these substances when used as vehicles for adenoviral transduction in solid tumor tissue.

Methods: Subcutaneous tumors of pancreatic ductal adenocarcinoma were established in mice and treated with a mix of adenoviral vector Adf35(GFP-Luc) and either one of the selected vehicles. Transduction efficacy was determined by quantification of the viral transgene expression level using live imaging.

Results: Addition of hyaluronidase tripled the transgene expression of Adf35(GFP-Luc) when compared to virus alone. No such positive effect was seen for the other tested vehicles.

Conclusions: Out of the tested candidates, hyaluronidase showed the best potential to facilitate viral spread in tumor tissue and transduction of tumor cells. Therefore, hyaluronidase may be used as vehicle to improve clinical efficacy of oncolytic virotherapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Upsala journal of medical sciences
Upsala journal of medical sciences 医学-医学:内科
CiteScore
5.60
自引率
0.00%
发文量
31
审稿时长
6-12 weeks
期刊介绍: Upsala Journal of Medical Sciences is published for the Upsala Medical Society. It has been published since 1865 and is one of the oldest medical journals in Sweden. The journal publishes clinical and experimental original works in the medical field. Although focusing on regional issues, the journal always welcomes contributions from outside Sweden. Specially extended issues are published occasionally, dealing with special topics, congress proceedings and academic dissertations.
期刊最新文献
Novel diagnostics for improved treatment of gynecological cancer. Evaluation of drug delivery vehicles for improved transduction of oncolytic adenoviruses in solid tumor tissue. Special issue: frontiers in recent advances on cancer diagnosis and treatment. Determinants of growth differentiation factor 15 plasma levels in outpatients with peripheral arterial disease. From early methods for DNA diagnostics to genomes and epigenomes at high resolution during four decades - a personal perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1