Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.

IF 4.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RSC Chemical Biology Pub Date : 2025-02-14 DOI:10.1039/d4cb00282b
Ruidi Zhu, Chengwei Wu, Jinyin Zha, Shaoyong Lu, Jian Zhang
{"title":"Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery.","authors":"Ruidi Zhu, Chengwei Wu, Jinyin Zha, Shaoyong Lu, Jian Zhang","doi":"10.1039/d4cb00282b","DOIUrl":null,"url":null,"abstract":"<p><p>Allosteric regulation is a fundamental mechanism in enzyme function, enabling dynamic modulation of activity through ligand binding at sites distal to the active site. Allosteric modulators have gained significant attention due to their unique advantages, including enhanced specificity, reduced off-target effects, and the potential for synergistic interaction with orthosteric agents. However, the inherent complexity of allosteric mechanisms has posed challenges to the systematic discovery and design of allosteric modulators. This review discusses recent advancements in computational methodologies for identifying and characterizing allosteric sites in enzymes, emphasizing techniques such as molecular dynamics (MD) simulations, enhanced sampling methods, normal mode analysis (NMA), evolutionary conservation analysis, and machine learning (ML) approaches. Advanced tools like PASSer, AlloReverse, and AlphaFold have further enhanced the understanding of allosteric mechanisms and facilitated the design of selective allosteric modulators. Case studies on enzymes such as Sirtuin 6 (SIRT6) and MAPK/ERK kinase (MEK) demonstrate the practical applications of these approaches in drug discovery. By integrating computational predictions with experimental validation, this review highlights the transformative potential of computational strategies in advancing allosteric drug discovery, offering innovative opportunities to regulate enzyme activity for therapeutic benefits.</p>","PeriodicalId":40691,"journal":{"name":"RSC Chemical Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11836628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Chemical Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4cb00282b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allosteric regulation is a fundamental mechanism in enzyme function, enabling dynamic modulation of activity through ligand binding at sites distal to the active site. Allosteric modulators have gained significant attention due to their unique advantages, including enhanced specificity, reduced off-target effects, and the potential for synergistic interaction with orthosteric agents. However, the inherent complexity of allosteric mechanisms has posed challenges to the systematic discovery and design of allosteric modulators. This review discusses recent advancements in computational methodologies for identifying and characterizing allosteric sites in enzymes, emphasizing techniques such as molecular dynamics (MD) simulations, enhanced sampling methods, normal mode analysis (NMA), evolutionary conservation analysis, and machine learning (ML) approaches. Advanced tools like PASSer, AlloReverse, and AlphaFold have further enhanced the understanding of allosteric mechanisms and facilitated the design of selective allosteric modulators. Case studies on enzymes such as Sirtuin 6 (SIRT6) and MAPK/ERK kinase (MEK) demonstrate the practical applications of these approaches in drug discovery. By integrating computational predictions with experimental validation, this review highlights the transformative potential of computational strategies in advancing allosteric drug discovery, offering innovative opportunities to regulate enzyme activity for therapeutic benefits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
128
审稿时长
10 weeks
期刊最新文献
Three- and four-stranded nucleic acid structures and their ligands. Functionalization of a versatile fluorescent sensor for detecting protease activity and temporally gated opioid sensing. Covalent functionalization of G protein-coupled receptors by small molecular probes. Decoding allosteric landscapes: computational methodologies for enzyme modulation and drug discovery. The evolution and application of RNA-focused small molecule libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1