Circular RNA Circ_0079226 Plays an Oncogenic Role in Gastric Cancer via the miR-155-5p/FOXK1/AKT Pathway.

IF 2.6 4区 医学 Q3 CELL BIOLOGY Analytical Cellular Pathology Pub Date : 2025-02-13 eCollection Date: 2025-01-01 DOI:10.1155/ancp/6619550
Hui Zhang, Zhisheng Huang, Yingyun Zhong
{"title":"Circular RNA Circ_0079226 Plays an Oncogenic Role in Gastric Cancer via the miR-155-5p/FOXK1/AKT Pathway.","authors":"Hui Zhang, Zhisheng Huang, Yingyun Zhong","doi":"10.1155/ancp/6619550","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Circular RNA (circRNA) is implicated in various biological processes, including the progression of gastric cancer (GC). The specific functions and underlying mechanisms of circ_0079226 in GC are unknown. <b>Methods:</b> We examined cancerous and adjacent noncancerous tissues from 25 patients with GC to evaluate circ_0079226, miR-155-5p, and forkhead transcription factor K1 (FOXK1) expression. Pearson's correlation analysis was used to assess the relationships among these RNAs. We examined their functional roles utilizing in vitro (cell cytotoxicity kit-8, wound healing, and Transwell invasion assays) and in vivo (xenograft mouse models) approaches. Molecular mechanisms were investigated using bioinformatics, dual-luciferase reporter assays, and rescue experiments, while quantitative real-time PCR, western blot, immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and protein immunofluorescence (IF) were used to detect gene expression. <b>Results:</b> We found that circ_0079226 and FOXK1 levels were elevated, while miR-155-5p was reduced in GC tissues and cells. An inverse correlation existed between FOXK1 and miR-155-5p, while a direct correlation was observed between FOXK1 and circ_0079226. Circ_0079226 facilitated GC cell proliferation, migration, invasion, and in vivo tumor growth. It functions by sequestering miR-155-5p, which directly targets FOXK1. High miR-155-5p expression mitigated the effects of circ_0079226 on GC cells, and the reintroduction of FOXK1 reversed the inhibitory effects of miR-155-5p. Circ_0079226 boosts FOXK1 and its associated downstream signaling pathways, including FAK, AKT, and p-AKT, through competitive binding with miR-155-5p. <b>Conclusions:</b> In conclusion, circ_0079226 is implicated in GC cell proliferation and metastasis by modulating the miR-155-5p/FOXK1/AKT pathway, presenting it as a potential therapeutic target.</p>","PeriodicalId":49326,"journal":{"name":"Analytical Cellular Pathology","volume":"2025 ","pages":"6619550"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842135/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/ancp/6619550","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Circular RNA (circRNA) is implicated in various biological processes, including the progression of gastric cancer (GC). The specific functions and underlying mechanisms of circ_0079226 in GC are unknown. Methods: We examined cancerous and adjacent noncancerous tissues from 25 patients with GC to evaluate circ_0079226, miR-155-5p, and forkhead transcription factor K1 (FOXK1) expression. Pearson's correlation analysis was used to assess the relationships among these RNAs. We examined their functional roles utilizing in vitro (cell cytotoxicity kit-8, wound healing, and Transwell invasion assays) and in vivo (xenograft mouse models) approaches. Molecular mechanisms were investigated using bioinformatics, dual-luciferase reporter assays, and rescue experiments, while quantitative real-time PCR, western blot, immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and protein immunofluorescence (IF) were used to detect gene expression. Results: We found that circ_0079226 and FOXK1 levels were elevated, while miR-155-5p was reduced in GC tissues and cells. An inverse correlation existed between FOXK1 and miR-155-5p, while a direct correlation was observed between FOXK1 and circ_0079226. Circ_0079226 facilitated GC cell proliferation, migration, invasion, and in vivo tumor growth. It functions by sequestering miR-155-5p, which directly targets FOXK1. High miR-155-5p expression mitigated the effects of circ_0079226 on GC cells, and the reintroduction of FOXK1 reversed the inhibitory effects of miR-155-5p. Circ_0079226 boosts FOXK1 and its associated downstream signaling pathways, including FAK, AKT, and p-AKT, through competitive binding with miR-155-5p. Conclusions: In conclusion, circ_0079226 is implicated in GC cell proliferation and metastasis by modulating the miR-155-5p/FOXK1/AKT pathway, presenting it as a potential therapeutic target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Cellular Pathology
Analytical Cellular Pathology ONCOLOGY-CELL BIOLOGY
CiteScore
4.90
自引率
3.10%
发文量
70
审稿时长
16 weeks
期刊介绍: Analytical Cellular Pathology is a peer-reviewed, Open Access journal that provides a forum for scientists, medical practitioners and pathologists working in the area of cellular pathology. The journal publishes original research articles, review articles, and clinical studies related to cytology, carcinogenesis, cell receptors, biomarkers, diagnostic pathology, immunopathology, and hematology.
期刊最新文献
Circular RNA Circ_0079226 Plays an Oncogenic Role in Gastric Cancer via the miR-155-5p/FOXK1/AKT Pathway. SLC1A4 Promotes Malignant Transformation of Hepatocellular Carcinoma by Activating the AKT Signaling. DDX21 Is a Potential Biomarker for Predicting Recurrence and Prognosis in Hepatocellular Carcinoma. Development of a Novel Prognostic Model for Lung Adenocarcinoma Utilizing Pyroptosis-Associated LncRNAs. High Glucose-Induced Senescent Fibroblasts-Derived Exosomal miR-497 Inhibits Wound Healing by Regulating Endothelial Cellular Autophagy via ATG13.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1