Highly Active and Stable Single-Atom Cobalt in Zeolite for Acetylene Semihydrogenation

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2025-02-21 DOI:10.1021/acscatal.4c07063
Essa Alhashmi, George Ebri, Klaus Hellgardt
{"title":"Highly Active and Stable Single-Atom Cobalt in Zeolite for Acetylene Semihydrogenation","authors":"Essa Alhashmi, George Ebri, Klaus Hellgardt","doi":"10.1021/acscatal.4c07063","DOIUrl":null,"url":null,"abstract":"Ethylene produced from steam cracking includes an acetylene impurity of 0.5–3%, harming the downstream polymerization process. To achieve polymer-grade ethylene, acetylene must be removed by chemoselective hydrogenation to ethylene without overhydrogenation to ethane. The current state-of-the-art process uses supported Pd nanoparticles (NPs) and toxic CO injections to poison the active sites, which is expensive and shows poor ethylene selectivity. To tackle this issue, the use of single-atom catalysts can offer a way to simultaneously improve selectivity through preferential desorption of ethylene over its hydrogenation and minimize cost. In particular, single-atom cobalt catalysis can address both of these issues. However, to date, single-atom cobalt has not been tested for this reaction. Herein, we present a cost-effective monometallic, cobalt-anchored zeolite Y (Co<sub>1</sub>@Y) catalyst, synthesized via an in situ hydrothermal method, holding isolated active cobalt atoms that efficiently and selectively hydrogenate acetylene to ethylene. Characterization techniques proved the absence of NPs and the presence of single-atom cobalt sites. The catalyst achieved an ethylene selectivity of 90 ± 2% at full acetylene conversion, with a stable performance for over 400 h. Co<sub>1</sub>@Y achieved TOF<sub>ethylene</sub> greater than the previously reported zeolite-supported single-atom catalysts by ∼5 times. Varying the dispersion of cobalt from an NP to a single atom modified the reaction mechanism from associative to dissociative, remarkably improving catalytic activity and selectivity. This strategy can be extended to other relatively inactive metals and other hydrogenation reactions.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"6 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethylene produced from steam cracking includes an acetylene impurity of 0.5–3%, harming the downstream polymerization process. To achieve polymer-grade ethylene, acetylene must be removed by chemoselective hydrogenation to ethylene without overhydrogenation to ethane. The current state-of-the-art process uses supported Pd nanoparticles (NPs) and toxic CO injections to poison the active sites, which is expensive and shows poor ethylene selectivity. To tackle this issue, the use of single-atom catalysts can offer a way to simultaneously improve selectivity through preferential desorption of ethylene over its hydrogenation and minimize cost. In particular, single-atom cobalt catalysis can address both of these issues. However, to date, single-atom cobalt has not been tested for this reaction. Herein, we present a cost-effective monometallic, cobalt-anchored zeolite Y (Co1@Y) catalyst, synthesized via an in situ hydrothermal method, holding isolated active cobalt atoms that efficiently and selectively hydrogenate acetylene to ethylene. Characterization techniques proved the absence of NPs and the presence of single-atom cobalt sites. The catalyst achieved an ethylene selectivity of 90 ± 2% at full acetylene conversion, with a stable performance for over 400 h. Co1@Y achieved TOFethylene greater than the previously reported zeolite-supported single-atom catalysts by ∼5 times. Varying the dispersion of cobalt from an NP to a single atom modified the reaction mechanism from associative to dissociative, remarkably improving catalytic activity and selectivity. This strategy can be extended to other relatively inactive metals and other hydrogenation reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸汽裂解生产的乙烯含有 0.5-3% 的乙炔杂质,会损害下游聚合工艺。要获得聚合级乙烯,必须通过化学选择性加氢生成乙烯而不过度加氢生成乙烷来去除乙炔。目前最先进的工艺使用支撑钯纳米粒子(NPs)和有毒的一氧化碳注入来毒化活性位点,成本高昂,乙烯选择性差。为了解决这个问题,使用单原子催化剂可以通过优先解吸乙烯而不是加氢来同时提高选择性,并最大限度地降低成本。其中,单原子钴催化可同时解决这两个问题。然而,迄今为止,单原子钴尚未用于该反应的测试。在此,我们介绍了一种具有成本效益的单金属、钴锚定沸石 Y(Co1@Y)催化剂,该催化剂通过原位水热法合成,含有分离的活性钴原子,可高效、选择性地将乙炔氢化为乙烯。表征技术证明,该催化剂不含 NPs,存在单原子钴位点。该催化剂在乙炔完全转化时的乙烯选择性为 90 ± 2%,性能稳定超过 400 小时。Co1@Y 的 TOFethylene 值是之前报道的沸石支撑单原子催化剂的 5 倍。将钴的分散度从 NP 改为单原子,可将反应机理从缔合式改为解离式,从而显著提高催化活性和选择性。这种策略可以推广到其他相对不活泼的金属和其他氢化反应中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Activity Regulation of a Glutamine Amidotransferase Bienzyme Complex by Substrate-Induced Subunit Interface Expansion Identification of Sabatier Descriptors for Hydrodeoxygenation Activity and Selectivity on Supported Molybdenum Oxide Catalysts Tuning Vacancy in Metal Oxide Support to Enhance Activity and Durability of Pt Catalysts for the Methanol Oxidation Reaction Accelerated Optimization of Compositions and Chemical Ordering for Bimetallic Alloy Catalysts Using Bayesian Learning Recent Advances in Desulfurization of VOSCs: Multiple Catalysts and Coupling Enzymes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1