ChatGPT-estimated occupational complexity predicts cognitive outcomes and cortical thickness above and beyond socioeconomic status among older adults

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY GeroScience Pub Date : 2025-02-22 DOI:10.1007/s11357-025-01570-4
Junhong Yu, Ee-Heok Kua, Rathi Mahendran, Ted Kheng Siang Ng
{"title":"ChatGPT-estimated occupational complexity predicts cognitive outcomes and cortical thickness above and beyond socioeconomic status among older adults","authors":"Junhong Yu, Ee-Heok Kua, Rathi Mahendran, Ted Kheng Siang Ng","doi":"10.1007/s11357-025-01570-4","DOIUrl":null,"url":null,"abstract":"<p>Many aging cohort studies have collected data on participants’ job titles, yet these job titles were seldom analyzed within the cognitive aging context despite their relevance to neurocognition, due to difficulties in analyzing these job titles quantitatively. While it is possible to rate these jobs’ occupational complexity (OC) using job classification systems, this can be somewhat labor-intensive and prone to human errors. To this end, we demonstrate a novel and simple method to extract OC ratings from job titles using ChatGPT. Then, we showcased the utility of these ratings in predicting cognitive and structural brain outcomes, especially compared to other socioeconomic status (SES) indicators. Community-dwelling older adults (<i>N</i> = 238, age<sub>mean</sub> = 70) completed cognitive assessments and underwent MRI scans. Regression models were fitted to predict 14 different cognitive outcomes, vertex-wise cortical thickness (CT), and subcortical gray matter volumes, using OC scores and/or SES predictors (e.g., education, housing type, and income levels), controlling for demographical covariates. OC scores outperformed SES indicators in predicting clusters of CT increases and most cognitive outcomes, including diagnoses of mild cognitive impairment. Furthermore, OC scores significantly predicted clusters of CT increases and various cognitive outcomes, even after controlling for SES. Meta-analytic decoding suggests these clusters of CT increases occurred in regions typically associated with sensorimotor and memory processing. These results highlight the significant and unique contribution of ChatGPT-derived OC scores in predicting cognitive and brain aging outcomes. These scores are easy to derive and can be helpful in fine-tuning predictions of cognitive and brain aging outcomes.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"82 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01570-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many aging cohort studies have collected data on participants’ job titles, yet these job titles were seldom analyzed within the cognitive aging context despite their relevance to neurocognition, due to difficulties in analyzing these job titles quantitatively. While it is possible to rate these jobs’ occupational complexity (OC) using job classification systems, this can be somewhat labor-intensive and prone to human errors. To this end, we demonstrate a novel and simple method to extract OC ratings from job titles using ChatGPT. Then, we showcased the utility of these ratings in predicting cognitive and structural brain outcomes, especially compared to other socioeconomic status (SES) indicators. Community-dwelling older adults (N = 238, agemean = 70) completed cognitive assessments and underwent MRI scans. Regression models were fitted to predict 14 different cognitive outcomes, vertex-wise cortical thickness (CT), and subcortical gray matter volumes, using OC scores and/or SES predictors (e.g., education, housing type, and income levels), controlling for demographical covariates. OC scores outperformed SES indicators in predicting clusters of CT increases and most cognitive outcomes, including diagnoses of mild cognitive impairment. Furthermore, OC scores significantly predicted clusters of CT increases and various cognitive outcomes, even after controlling for SES. Meta-analytic decoding suggests these clusters of CT increases occurred in regions typically associated with sensorimotor and memory processing. These results highlight the significant and unique contribution of ChatGPT-derived OC scores in predicting cognitive and brain aging outcomes. These scores are easy to derive and can be helpful in fine-tuning predictions of cognitive and brain aging outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
期刊最新文献
Decoding cognitive aging: how white matter tracts and demographics distinguish potential Super-Agers SenSkin™: a human skin-specific cellular senescence gene set Improving care interactions (and training) in nursing homes with artificial intelligence Awareness, knowledge, and motivations about lifespan, healthspan, and Healthy Longevity Medicine in the general population: the HEalthy LOngevity (HELO) conceptual framework ChatGPT-estimated occupational complexity predicts cognitive outcomes and cortical thickness above and beyond socioeconomic status among older adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1