{"title":"Triple-Functional Smart Organic Molecules Enable Self-Enhancement Modulation of Organic Photoelectrochemical Transistor","authors":"Jin-Ming Zhang, Yuan Gao, Yuan-Cheng Zhu, Rui Ban, Yu-Mei Li, Haijun Du, Feng-Zao Chen, Wei-Wei Zhao","doi":"10.1021/acs.analchem.4c05193","DOIUrl":null,"url":null,"abstract":"Organic photoelectrochemical transistor (OPECT) has undergone significant advancements, enabling an effective synergy between organic electronics and photoelectrochemistry, contributing to opto-logic gates, neuromorphic emulation, and biological detection. However, feasible OPECT operation is still quite limited and the associated technology is evolving. This study introduces a self-enhancement OPECT operation facilitated by triple-functional stimuli-responsive organic molecules (SROM). The representative SROM sensitizes the photogate to selectively recognize the chosen target, where the reaction product serves to reengineer band alignment, resulting in a self-enhanced OPECT modulation. We further leverage this effect to implement highly selective detection of sulfite. The findings of this work bridge the gap between OPECT and SROM, demonstrating the significant potential of SROM in a unique OPECT operation and implementation.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"1 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic photoelectrochemical transistor (OPECT) has undergone significant advancements, enabling an effective synergy between organic electronics and photoelectrochemistry, contributing to opto-logic gates, neuromorphic emulation, and biological detection. However, feasible OPECT operation is still quite limited and the associated technology is evolving. This study introduces a self-enhancement OPECT operation facilitated by triple-functional stimuli-responsive organic molecules (SROM). The representative SROM sensitizes the photogate to selectively recognize the chosen target, where the reaction product serves to reengineer band alignment, resulting in a self-enhanced OPECT modulation. We further leverage this effect to implement highly selective detection of sulfite. The findings of this work bridge the gap between OPECT and SROM, demonstrating the significant potential of SROM in a unique OPECT operation and implementation.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.