Elemental Reactivity Maps for Materials Discovery

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-02-21 DOI:10.1021/acs.chemmater.4c02259
Yuki Inada, Masaya Fujioka, Haruhiko Morito, Tohru Sugahara, Hisanori Yamane, Yukari Katsura
{"title":"Elemental Reactivity Maps for Materials Discovery","authors":"Yuki Inada, Masaya Fujioka, Haruhiko Morito, Tohru Sugahara, Hisanori Yamane, Yukari Katsura","doi":"10.1021/acs.chemmater.4c02259","DOIUrl":null,"url":null,"abstract":"When searching for novel inorganic materials, limiting the combination of constituent elements can greatly improve the search efficiency. In this study, we used machine learning to predict elemental combinations with high reactivity for materials discovery. The essential issue for such prediction is the uncertainty of whether the unreported combinations are nonreactive or not just investigated, though the reactive combinations can be easily collected as positive data sets from the materials databases. To construct the negative data sets, we developed a process to select reliable nonreactive combinations by evaluating the similarity between unreported and reactive combinations. The machine learning models were trained by both data sets, and the prediction results were visualized by two-dimensional heatmaps: elemental reactivity maps to identify elemental combinations with high reactivity but no reported stable compounds. The maps predicted high reactivity (i.e., synthesizability) for the Co–Al–Ge ternary system, and two novel ternary compounds were synthesized: Co<sub>4</sub>Ge<sub>3.19</sub>Al<sub>0.81</sub> and Co<sub>2</sub>Al<sub>1.26</sub>Ge<sub>1.74</sub>.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"18 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02259","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When searching for novel inorganic materials, limiting the combination of constituent elements can greatly improve the search efficiency. In this study, we used machine learning to predict elemental combinations with high reactivity for materials discovery. The essential issue for such prediction is the uncertainty of whether the unreported combinations are nonreactive or not just investigated, though the reactive combinations can be easily collected as positive data sets from the materials databases. To construct the negative data sets, we developed a process to select reliable nonreactive combinations by evaluating the similarity between unreported and reactive combinations. The machine learning models were trained by both data sets, and the prediction results were visualized by two-dimensional heatmaps: elemental reactivity maps to identify elemental combinations with high reactivity but no reported stable compounds. The maps predicted high reactivity (i.e., synthesizability) for the Co–Al–Ge ternary system, and two novel ternary compounds were synthesized: Co4Ge3.19Al0.81 and Co2Al1.26Ge1.74.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于材料发现的元素反应图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Guidelines for the Selection of Scintillators for Indirect Photon-Counting X-ray Detectors Configuration Engineering of Plasmonic-Metal/Semiconductor Nanohybrids for Solar Fuel Production† Issue Publication Information Issue Editorial Masthead Chemistry of Materials Highlights Colloidal Semiconductor Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1