PolarDETR: Polar Parametrization for vision-based surround-view 3D detection

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-21 DOI:10.1016/j.imavis.2025.105438
Shaoyu Chen , Xinggang Wang , Tianheng Cheng , Qian Zhang , Chang Huang , Wenyu Liu
{"title":"PolarDETR: Polar Parametrization for vision-based surround-view 3D detection","authors":"Shaoyu Chen ,&nbsp;Xinggang Wang ,&nbsp;Tianheng Cheng ,&nbsp;Qian Zhang ,&nbsp;Chang Huang ,&nbsp;Wenyu Liu","doi":"10.1016/j.imavis.2025.105438","DOIUrl":null,"url":null,"abstract":"<div><div>3D detection based on surround-view camera system is a critical and promising technique in autopilot. In this work, we exploit the view symmetry of surround-view camera system as inductive bias to improve optimization and boost performance. We parameterize object’s position by polar coordinate and decompose velocity along radial and tangential direction. And the perception range, label assignment and loss function are correspondingly reformulated in polar coordinate system. This new Polar Parametrization scheme establishes explicit associations between image patterns and prediction targets. Based on it, we propose a surround-view 3D detection method, termed PolarDETR. PolarDETR achieves competitive performance on nuScenes dataset. Thorough ablation studies are provided to validate the effectiveness.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105438"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000265","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

3D detection based on surround-view camera system is a critical and promising technique in autopilot. In this work, we exploit the view symmetry of surround-view camera system as inductive bias to improve optimization and boost performance. We parameterize object’s position by polar coordinate and decompose velocity along radial and tangential direction. And the perception range, label assignment and loss function are correspondingly reformulated in polar coordinate system. This new Polar Parametrization scheme establishes explicit associations between image patterns and prediction targets. Based on it, we propose a surround-view 3D detection method, termed PolarDETR. PolarDETR achieves competitive performance on nuScenes dataset. Thorough ablation studies are provided to validate the effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PolarDETR:基于视觉的环视三维检测极坐标参数化
基于环视相机系统的三维检测技术是自动驾驶汽车的一项关键技术。在这项工作中,我们利用环视相机系统的视图对称性作为归纳偏置来改进优化和提高性能。用极坐标参数化物体位置,并沿径向和切向分解速度。并在极坐标系中对感知范围、标签分配和损失函数进行了相应的重新表述。这种新的极性参数化方案在图像模式和预测目标之间建立了明确的关联。在此基础上,我们提出了一种称为PolarDETR的环视三维检测方法。PolarDETR在nuScenes数据集上实现了具有竞争力的性能。提供了彻底的消融研究来验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
MMDehazeNet: Cross-modality attention with feature correction and multi-scale encoding for visible-infrared dehazing Disentangling co-occurrence with class-specific banks for Weakly Supervised Semantic Segmentation Enhancing UAV small target detection: A balanced accuracy-efficiency algorithm with tiered feature focus Editorial Board OIDSty: One-shot identity-preserving face stylization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1