CaCO3 Microparticle-Based Carriers: Optimization of BSA Loading by Coprecipitation

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Physics of Atomic Nuclei Pub Date : 2025-02-22 DOI:10.1134/S1063778824100041
L. Biny, D. Kalenichenko, I. Nabiev, A. Sukhanova
{"title":"CaCO3 Microparticle-Based Carriers: Optimization of BSA Loading by Coprecipitation","authors":"L. Biny,&nbsp;D. Kalenichenko,&nbsp;I. Nabiev,&nbsp;A. Sukhanova","doi":"10.1134/S1063778824100041","DOIUrl":null,"url":null,"abstract":"<p>Oncological diseases, constituting a major global cause of death, require more selective treatments to minimize side effects. Immunotherapy using antibodies targeting immune checkpoints is a promising approach, but it is limited by poor tumor penetration and treatment resistance of cancer cells. The use of biocompatible and biodegradable calcium carbonate microparticles as drug carriers offers a solution due to their capacity for encapsulation of biomolecules and control of their release, which increase the therapeutic efficacy while reducing side effects. Our study was aimed at optimizing the synthesis of calcium carbonate microparticles and improving the loading of bovine serum albumin, used as a model protein, into them by means of coprecipitation. The approaches developed here make it possible to obtain protein carriers with advanced morphological characteristics and with a loading efficiency of more than 90%.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"87 11","pages":"1736 - 1739"},"PeriodicalIF":0.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778824100041","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Oncological diseases, constituting a major global cause of death, require more selective treatments to minimize side effects. Immunotherapy using antibodies targeting immune checkpoints is a promising approach, but it is limited by poor tumor penetration and treatment resistance of cancer cells. The use of biocompatible and biodegradable calcium carbonate microparticles as drug carriers offers a solution due to their capacity for encapsulation of biomolecules and control of their release, which increase the therapeutic efficacy while reducing side effects. Our study was aimed at optimizing the synthesis of calcium carbonate microparticles and improving the loading of bovine serum albumin, used as a model protein, into them by means of coprecipitation. The approaches developed here make it possible to obtain protein carriers with advanced morphological characteristics and with a loading efficiency of more than 90%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
期刊最新文献
Controlling the Luminescence of Quantum Dots in Hybrid Structures Based on Porous Silicon Corbino Voltage Generation for a High-Temperature Superconductor Protective Coatings on Hafnium Hydride and Their Effect on Its Thermal Decomposition Features of Fast Output Energy Regulation in a Linear Accelerator for Proton Therapy CaCO3 Microparticle-Based Carriers: Optimization of BSA Loading by Coprecipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1