Effects of Ti + Al content on the microstructure and mechanical properties of a new nickel-based superalloy fabricated by laser directed energy deposition
Tong Yang, Li Zhao, Wenxing Wu, Pinghu Chen, Changjun Qiu
{"title":"Effects of Ti + Al content on the microstructure and mechanical properties of a new nickel-based superalloy fabricated by laser directed energy deposition","authors":"Tong Yang, Li Zhao, Wenxing Wu, Pinghu Chen, Changjun Qiu","doi":"10.1007/s10853-025-10686-z","DOIUrl":null,"url":null,"abstract":"<div><p>Laser additive manufactured high γ′-phase nickel-based superalloys have a high cracking susceptibility due to the unique characteristics of superalloys, which can hinder their widespread application. This work overcomes the above challenges via a compositional optimization strategy, and a novel nickel-based superalloy with high γ′ phase has been developed via laser directed energy deposition (LDED). The effects of the various Al + Ti (1:1) contents (6.4, 6.6 and 6.8 wt.%) on microstructure and mechanical properties (room temperature, 850 °C and 900 °C) of the as-deposited and heat-treated specimens were investigated. Ultimately, the crack-free Ni-based superalloy has been successfully designed and fabricated by LDED, featuring a high γ′ phase content. The results indicated that the γ′ phase content and the number of the MC carbide particles increase with the increasing Ti + Al content. When the Ti + Al content is 6.6 wt.%, the newly designed Ni-based superalloy exhibits exceptional tensile properties (UTS: 1450 ± 42 MPa, YS: 1100 ± 36 MPa and EL: 16.5 ± 1.1%). After heat treatment, the γ′ phase, bulk-like (MC), long strips-like (M<sub>23</sub>C<sub>6</sub>) carbide and moderate amount of needle-like σ phase are present in the alloy with Ti + Al content of 6.6 wt.%. Therefore, the newly designed Ni-based superalloy exhibits superior tensile properties at 850 °C (UTS: 818 ± 34 MPa, YS: 774 ± 29 MPa and EL: 10 ± 0.7%) and 900 °C (UTS: 581 ± 28 MPa, YS: 558 ± 20 MPa and EL: 11.7 ± 0.9%). This approach provide a new alloy design route for achieving optimization of high-temperature mechanical properties and formability of nickel-based superalloys with high γ′ phase for laser additive manufacturing.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 8","pages":"3957 - 3973"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10686-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Laser additive manufactured high γ′-phase nickel-based superalloys have a high cracking susceptibility due to the unique characteristics of superalloys, which can hinder their widespread application. This work overcomes the above challenges via a compositional optimization strategy, and a novel nickel-based superalloy with high γ′ phase has been developed via laser directed energy deposition (LDED). The effects of the various Al + Ti (1:1) contents (6.4, 6.6 and 6.8 wt.%) on microstructure and mechanical properties (room temperature, 850 °C and 900 °C) of the as-deposited and heat-treated specimens were investigated. Ultimately, the crack-free Ni-based superalloy has been successfully designed and fabricated by LDED, featuring a high γ′ phase content. The results indicated that the γ′ phase content and the number of the MC carbide particles increase with the increasing Ti + Al content. When the Ti + Al content is 6.6 wt.%, the newly designed Ni-based superalloy exhibits exceptional tensile properties (UTS: 1450 ± 42 MPa, YS: 1100 ± 36 MPa and EL: 16.5 ± 1.1%). After heat treatment, the γ′ phase, bulk-like (MC), long strips-like (M23C6) carbide and moderate amount of needle-like σ phase are present in the alloy with Ti + Al content of 6.6 wt.%. Therefore, the newly designed Ni-based superalloy exhibits superior tensile properties at 850 °C (UTS: 818 ± 34 MPa, YS: 774 ± 29 MPa and EL: 10 ± 0.7%) and 900 °C (UTS: 581 ± 28 MPa, YS: 558 ± 20 MPa and EL: 11.7 ± 0.9%). This approach provide a new alloy design route for achieving optimization of high-temperature mechanical properties and formability of nickel-based superalloys with high γ′ phase for laser additive manufacturing.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.