Structural Heterogeneity of Intermediate States Facilitates CRIPT Peptide Binding to the PDZ3 Domain: Insights from Molecular Dynamics and Markov State Model Analysis.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-02-21 DOI:10.1021/acs.jctc.4c01308
Xingyu Song, Dongdong Wang, Jie Ji, Jingwei Weng, Wenning Wang
{"title":"Structural Heterogeneity of Intermediate States Facilitates CRIPT Peptide Binding to the PDZ3 Domain: Insights from Molecular Dynamics and Markov State Model Analysis.","authors":"Xingyu Song, Dongdong Wang, Jie Ji, Jingwei Weng, Wenning Wang","doi":"10.1021/acs.jctc.4c01308","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered proteins (IDPs), characterized by a lack of defined tertiary structure, are ubiquitous and indispensable components of cellular machinery. These proteins participate in a diverse array of biological processes, often undergoing conformational transitions upon binding to their target, a phenomenon termed \"folding-upon-binding.\" The finding raises the question of how to achieve rapid binding kinetics in the presence of intrinsic disorder, and the underlying molecular mechanism remains elusive. This study investigated the interaction between the C-terminal region of CRIPT and the third PDZ domain of PSD-95, a critical complex in neuronal development. Upon binding, the CRIPT peptide adopts a β-strand conformation, a process meticulously characterized through extensive molecular dynamics simulations totaling 67.7 μs. Our findings reveal a funnel-like binding landscape in which IDPs can adopt multiple conformations prior to binding, forming structurally heterogeneous intermediate complexes and leading to diverse binding pathways. The stabilization of these intermediate complexes necessitates a dynamic interplay of native and non-native interactions. Markov state model analysis underscores the important role of structural heterogeneity as it contributes to accelerated binding. These findings enrich the classical fly-casting mechanism and provide novel insights into the functional advantages conferred by intrinsic disorder.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01308","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsically disordered proteins (IDPs), characterized by a lack of defined tertiary structure, are ubiquitous and indispensable components of cellular machinery. These proteins participate in a diverse array of biological processes, often undergoing conformational transitions upon binding to their target, a phenomenon termed "folding-upon-binding." The finding raises the question of how to achieve rapid binding kinetics in the presence of intrinsic disorder, and the underlying molecular mechanism remains elusive. This study investigated the interaction between the C-terminal region of CRIPT and the third PDZ domain of PSD-95, a critical complex in neuronal development. Upon binding, the CRIPT peptide adopts a β-strand conformation, a process meticulously characterized through extensive molecular dynamics simulations totaling 67.7 μs. Our findings reveal a funnel-like binding landscape in which IDPs can adopt multiple conformations prior to binding, forming structurally heterogeneous intermediate complexes and leading to diverse binding pathways. The stabilization of these intermediate complexes necessitates a dynamic interplay of native and non-native interactions. Markov state model analysis underscores the important role of structural heterogeneity as it contributes to accelerated binding. These findings enrich the classical fly-casting mechanism and provide novel insights into the functional advantages conferred by intrinsic disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中间状态的结构异质性促进了 CRIPT 肽与 PDZ3 结构域的结合:分子动力学和马尔可夫状态模型分析的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Linear-Scaling Local Natural Orbital-Based Full Triples Treatment in Coupled-Cluster Theory. Linnett is Back: Chemical Bonding through the Lens of Born Maxima. Efficient Energy Measurement of Chemical Systems via One-Particle Reduced Density Matrix: A NOF-VQE Approach for Optimized Sampling. Structural Heterogeneity of Intermediate States Facilitates CRIPT Peptide Binding to the PDZ3 Domain: Insights from Molecular Dynamics and Markov State Model Analysis. Accurate Lattice Free Energies of Packing Polymorphs from Probabilistic Generative Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1