Jack Toor, Wiktoria R Grabowska, Adam L Johnson, Jane Jones, William G Stetler-Stevenson, Hanieh Khalili, David Peeney
{"title":"Histidine Tag-Specific PEGylation Improves the Circulating Half-Life of TIMP2.","authors":"Jack Toor, Wiktoria R Grabowska, Adam L Johnson, Jane Jones, William G Stetler-Stevenson, Hanieh Khalili, David Peeney","doi":"10.1021/acsabm.4c01385","DOIUrl":null,"url":null,"abstract":"<p><p>An overarching limitation of therapeutic biologics is the limited half-life these proteins often exhibit once in circulation. PEGylation, the chemical conjugation of proteins to poly(ethylene glycol) (PEG), is a common strategy to improve protein pharmacokinetics (PK) by enhancing stability, reducing immunogenicity, and decreasing renal clearance. Tissue Inhibitor of Metalloproteinases 2 (TIMP2) is a 22 kDa matrisome protein that exhibits therapeutic potential across a range of human disease models yet possesses a short serum half-life. To advance the therapeutic development of recombinant His-tagged TIMP2 (TIMP2), we utilized primary amine conjugation (1 kDa) and site-specific histidine conjugation (10 kDa) to improve its circulating half-life. Primary amine conjugation of PEG molecules to TIMP2 (TIMP2-a-PEG(<sub><i>n</i></sub>)) is efficient, yet it produces multiple positional isomers that are difficult to purify. Furthermore, high levels of conjugation can affect the MMP-inhibitory activity of TIMP2. Despite this, TIMP2-a-PEG(<sub><i>n</i></sub>) displays a significant improvement (11.5-fold) in serum half-life versus unconjugated TIMP2. In contrast, site-specific histidine conjugation targets the histidine tag, enabling the purification of mono-PEGylated (TIMP2-H-PEG<sub>(1)</sub>) and di-PEGylated (TIMP2-H-PEG<sub>(2)</sub>) forms. Our findings demonstrate that TIMP2-H-PEG<sub>(1)</sub> exhibits improved PK with enhanced stability and a 6.2-fold increase in circulating half-life while maintaining MMP-inhibitory activity. These results suggest that site-specific PEGylation at a C-terminal His<sub>6</sub> tag is a promising approach for further preclinical development of TIMP2 as a therapeutic biologic.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"1946-1955"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
An overarching limitation of therapeutic biologics is the limited half-life these proteins often exhibit once in circulation. PEGylation, the chemical conjugation of proteins to poly(ethylene glycol) (PEG), is a common strategy to improve protein pharmacokinetics (PK) by enhancing stability, reducing immunogenicity, and decreasing renal clearance. Tissue Inhibitor of Metalloproteinases 2 (TIMP2) is a 22 kDa matrisome protein that exhibits therapeutic potential across a range of human disease models yet possesses a short serum half-life. To advance the therapeutic development of recombinant His-tagged TIMP2 (TIMP2), we utilized primary amine conjugation (1 kDa) and site-specific histidine conjugation (10 kDa) to improve its circulating half-life. Primary amine conjugation of PEG molecules to TIMP2 (TIMP2-a-PEG(n)) is efficient, yet it produces multiple positional isomers that are difficult to purify. Furthermore, high levels of conjugation can affect the MMP-inhibitory activity of TIMP2. Despite this, TIMP2-a-PEG(n) displays a significant improvement (11.5-fold) in serum half-life versus unconjugated TIMP2. In contrast, site-specific histidine conjugation targets the histidine tag, enabling the purification of mono-PEGylated (TIMP2-H-PEG(1)) and di-PEGylated (TIMP2-H-PEG(2)) forms. Our findings demonstrate that TIMP2-H-PEG(1) exhibits improved PK with enhanced stability and a 6.2-fold increase in circulating half-life while maintaining MMP-inhibitory activity. These results suggest that site-specific PEGylation at a C-terminal His6 tag is a promising approach for further preclinical development of TIMP2 as a therapeutic biologic.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.