Occurrence and risk assessment of different cyanotoxins and their relationship with environmental factors in six typical eutrophic lakes of China

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-02-19 DOI:10.1016/j.envres.2025.121184
Huiting Yang , Yujia Yao , Wei Chen , Xiaohong Gu , Huihui Chen , Qingfei Zeng , Zhigang Mao , Tao Xiang
{"title":"Occurrence and risk assessment of different cyanotoxins and their relationship with environmental factors in six typical eutrophic lakes of China","authors":"Huiting Yang ,&nbsp;Yujia Yao ,&nbsp;Wei Chen ,&nbsp;Xiaohong Gu ,&nbsp;Huihui Chen ,&nbsp;Qingfei Zeng ,&nbsp;Zhigang Mao ,&nbsp;Tao Xiang","doi":"10.1016/j.envres.2025.121184","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanobacterial blooms can generate various toxic metabolites in freshwater, and pose serious threats to drinking water safety and human health. Although microcystins (MCs) have been detected in many freshwater ecosystems in China, little is known about the other cyanotoxins. An investigation of six eutrophic lakes (i.e. Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake) in different geographical locations of China was performed during the summer of 2022 to determine the occurrence of various cyanotoxins (i.e. anatoxin-a (ATX), cylindrospermopsin (CYN), and MCs) in water column and their possible risks, and to evaluate the related environmental factors. MCs levels in sediment of these lakes were also investigated. MCs were the primary cyanotoxins in the water column of investigated lakes. The mean MCs contents in water column of Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake were 3.61, 0.13, 3.60, 2.18, 0.57, and 2.56 μg/L, respectively. The total MCs levels in water column exceeded 1 μg/L in some areas of these lakes except Wuliangsuhai Lake. Replete nitrogen and/or phosphorus levels seemed to be related to MCs production. ATX can be detected in these lakes except Xingyun Lake at ng/L levels. CYN can be detected in all lakes at ng/L levels. However, the levels of ATX and CYN appear to be not significantly associated with environmental factors. MCs and CYN can pose a high or moderate risk for humans and aquatic organisms in some areas of these lakes, while ATX can pose a low or no risk for humans and aquatic organisms in most areas of these lakes. MCs can also be detected in sediment of all lakes at ng/g levels. This research emphasizes the necessity for long-term monitoring of different cyanotoxins in eutrophic lakes, and the implementation of nutrient control and management strategies.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"272 ","pages":"Article 121184"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125004359","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanobacterial blooms can generate various toxic metabolites in freshwater, and pose serious threats to drinking water safety and human health. Although microcystins (MCs) have been detected in many freshwater ecosystems in China, little is known about the other cyanotoxins. An investigation of six eutrophic lakes (i.e. Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake) in different geographical locations of China was performed during the summer of 2022 to determine the occurrence of various cyanotoxins (i.e. anatoxin-a (ATX), cylindrospermopsin (CYN), and MCs) in water column and their possible risks, and to evaluate the related environmental factors. MCs levels in sediment of these lakes were also investigated. MCs were the primary cyanotoxins in the water column of investigated lakes. The mean MCs contents in water column of Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake were 3.61, 0.13, 3.60, 2.18, 0.57, and 2.56 μg/L, respectively. The total MCs levels in water column exceeded 1 μg/L in some areas of these lakes except Wuliangsuhai Lake. Replete nitrogen and/or phosphorus levels seemed to be related to MCs production. ATX can be detected in these lakes except Xingyun Lake at ng/L levels. CYN can be detected in all lakes at ng/L levels. However, the levels of ATX and CYN appear to be not significantly associated with environmental factors. MCs and CYN can pose a high or moderate risk for humans and aquatic organisms in some areas of these lakes, while ATX can pose a low or no risk for humans and aquatic organisms in most areas of these lakes. MCs can also be detected in sediment of all lakes at ng/g levels. This research emphasizes the necessity for long-term monitoring of different cyanotoxins in eutrophic lakes, and the implementation of nutrient control and management strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota–gut–brain axis Metatranscriptomics sheds light on electron transfer in anammox bacteria enhanced by the redox mediator neutral red Synergistic microalgae-duckweed systems for enhanced aquaculture wastewater treatment, biomass recovery, and CO2 sequestration: A novel approach for sustainable resource recovery Metabolic and ecological responses of denitrifying consortia to different carbon source strategies under fluctuating C/N conditions Fe3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1